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ABSTRACT

Numerous mobile apps have leveraged deep learning capabilities.
However, on-device models are vulnerable to attacks as they can be
easily extracted from their corresponding mobile apps. Although
the structure and parameters information of these models can be
accessed, existing on-device attacking approaches only generate
black-box attacks (i.e., indirect white-box attacks), which are less
effective and efficient than white-box strategies. This is because mo-
bile deep learning (DL) frameworks like TensorFlow Lite (TFLite)
do not support gradient computing (referred to as non-debuggable
models), which is necessary for white-box attacking algorithms.
Thus, we argue that existing findings may underestimate the harm-
fulness of on-device attacks. To validate this, we systematically
analyze the difficulties of transforming the on-device model to its
debuggable version and propose a Reverse Engineering framework
for On-device Models (REOM), which automatically reverses the
compiled on-device TFLite model to its debuggable version, en-
abling attackers to launch white-box attacks. Our empirical results
show that our approach is effective in achieving automated trans-
formation (i.e., 92.6%) among 244 TFLite models. Compared with
previous attacks using surrogate models, REOM enables attackers
to achieve higher attack success rates (10.23%—89.03%) with a hun-
dred times smaller attack perturbations (1.0—0.01). Our findings
emphasize the need for developers to carefully consider their model
deployment strategies, and use white-box methods to evaluate the
vulnerability of on-device models. Our artifacts ! are available.
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1 INTRODUCTION

The number of mobile devices worldwide is continuously growing.
The capabilities of those devices also keep increasing, i.e., with
powerful Central Processing Units (CPUs) and a large amount of
memory, making them suitable for running deep learning (DL) mod-
els. Indeed, mobile devices have now become an ideal platform for
deploying the DL model. Many intelligent applications have already
been deployed on mobile devices [39] and have already benefited
millions of users. Though DL models can also be deployed on a
cloud platform, data transmission between a mobile device and the
cloud may compromise user privacy. Indeed, to achieve high-level
security, users’ personal data should not be sent outside the device.
This could be the reason why more and more DL models are de-
ployed on the device, which has been advertised as one of the most
important features by the newly emerged OpenHarmony mobile
system [22]), and the corresponding models are often referred to
as on-device models.

Unfortunately, such on-device models are directly presented on
mobile devices, giving attackers a lot of opportunities to exploit
since it is relatively easy to unpack mobile apps to locate the physi-
cal models. As a result, on-device models are facing more and more
serious security threats. Although on-device models are released to
users as black-box ones for preventing potential attacks because at-
tackers cannot obtain gradient information? from on-device models
(referred to as non-debuggable models), they do not fulfill such
a purpose in practice. Indeed, as illustrated in Figure 1, attackers
still find ways to attack black-box models without accessing their
gradient information, e.g., via the so-called transferable attacks
(referred to as indirect white-box attack). They achieve this by
first, for target models, identifying debuggable surrogate models
that are available to generate attacks. They then exploit surrogate
models through white-box strategies. Once the strategies satisfy the
attackers’ needs, they apply the same strategies to attack on-device
models.

In fact, many vulnerabilities of on-device models have already
been discovered by our fellow researchers in recent years. For exam-
ple, Huang et al. [15, 16] propose to achieve the purpose by parsing
features of the on-device model to find a surrogate model from the
web, which could then be used to launch transferable attacks on
mobile models. Cao et al. [4] also use surrogate models for attack-
ing mobile models under the black-box setting, albeit by obtaining

2Gradient information is considered crucial to implement effective white-box attacks.
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Figure 1: The typical scenarios of evaluating the vulnerability of
on-device DL models.

information from mobile models via querying their outputs, and
then training a surrogate model using such information.

Unfortunately, the performance of these approaches is highly
dependent on the similarity between the surrogate model and the
target models. It is often difficult to find an ideal surrogate model
that is highly similar to the target, thus affecting the effectiveness of
attacks. Since on-device models are directly hosted on devices, we
manually look into those models and observe that such on-device
models still keep the model’s architecture and weights information
but cannot be directly accessed. We are, therefore, wondering if it
is possible to extract this information so as to allow for evaluating
vulnerabilities of on-device models as if they are white-box ones,
without generating surrogate models (cf. the right part in Figure 1).
If that is possible, current evaluation methods underestimate the
threats of on-device models as direct white-box attacks are much
more effective than black-box attacks (i.e., indirect white-box at-
tacks) [35]. To this end, in this work, we propose a method REOM
to explore the following research question:

RQ: Can on-device Models Be Directly Attacked via White-
box Strategies?

Borrowing the idea of reverse engineering the software artifact,
which is often considered a black box as analysts cannot directly
access the code, we start by checking if it is possible to reverse
engineering on-device models. Our exploitation reveals that it is
possible to obtain a white-box version of the target model by first
transforming it to an Open Neural Network Exchange (ONNX)
model and then transforming it back to debuggable AI models
(thanks to the transparency of ONNX).

Towards answering the aforementioned research question, we
start by verifying this hypothesis through a preliminary study.
Specifically, we focus on transforming TensorFlow-Lite (TFLite in
short) models, the most popular on-device models, to ONNX and
then PyTorch models, which is the most popular debuggable model
format. With 244 TFLite models extracted from 173,905 Google Play
apps released in 2021, preliminary experimental results show that
such a process is not able to achieve our purpose, i.e., transforming
black-box on-device models with white-box versions. Indeed, over
90% of the models cannot be successfully transformed.

We then go one step deeper to understand why the majority
of models cannot be transformed by looking into the error mes-
sages. Our manual investigation reveals three types of errors in
the above model transformation study, namely Compatibility
Errors,Not Implemented Errors, and Input Type Errors. To
this end, we propose to complement the aforementioned process
by automatically correcting those errors. In particular, we present
to the community a model transformation framework called REOM,
which includes dedicated strategies in three modification modules
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to correct the aforementioned three types of errors, respectively. Ex-
perimental results show that our approach is effective by increasing
the success rate from 6.6% to 92.6%, with the aforementioned 244 on-
device TFLite models. We further demonstrate that the transformed
debuggable models and the original on-device model are indeed
very similar, with a normalized £, output distance less than 0.001 in
most cases. Moreover, we also experimentally show that the trans-
formed models can indeed support stronger attacks. Compared with
previous methods of generating attacks using surrogate models,
attackers can achieve higher attack success rates (10.23%—289.03%)
with a hundred times smaller attack perturbations (1.0—0.01) based
on our proposed tool.

The main contributions of this paper are shown as follows:
e We propose a complete Reverse Engineering framework for On-

device Models (REOM) to convert the compiled on-device models
to their corresponding debuggable version.

e REOM can transform the model automatically, which presents
the potential to be an essential tool to develop methods for testing
the reliability of on-device models.

o Our paper shows attackers can achieve comparable on-devices at-
tack performance with the white-box setting. The current model
deployment strategy is at serious risk.

e We provide solutions to defense against reverse engineering
based on our observation.

2 BACKGROUND AND RELATED WORK

We now provide the necessary background about on-device DL
models, DL model attack,s and the ONNX project.

2.1 On-device DL Models

DL frameworks: The open-source community has developed
many well-known open-source frameworks for DL tasks such as
TensorFlow [1], Theano [2], Caffe [19], Keras [9], and PyTorch [32].
These frameworks dominate the development of DL models and
set standards for them [11]. PyTorch is one of the latest DL frame-
works, and is gaining popularity for its ease of use and its capabil-
ity to construct the dynamic computational graph, which is now
widely used by the academic community. In contrast, TensorFlow is
widely used by companies, startups, and business firms to automate
things and develop new systems. It has distributed training sup-
port, scalable production options, and support for mobile devices.
Currently, the AT community has made huge efforts to develop
open-source on-device frameworks like TensorFlow Lite (TFLite),
Caffe2, Caffe, NCNN, and ONNX. As an on-device DL platform,
TensorFlow Lite (TFLite) is the most popular framework for DL
models on smartphones, as it has GPU support and is optimized for
mobile devices [16, 39].

TFLite Models. TFLite models have powerful features for run-
ning models on edge devices but they do not provide APIs to access
the gradient or intermediate outputs like other TensorFlow or Py-
Torch models. TensorFlow provides a TensorFlow Lite Converter
to convert a TensorFlow model into a TensorFlow Lite model. In
addition, the models trained by other DL frameworks can also be
converted to the TFLite model. For example, PyTorch provides the
API to save the model as ONNX format, and then convert the ONNX
model to TensorFlow and TFLite model Onnx-tf tool. For parsing
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the model structure and weights from the . tflite file, we can use
the schema file 3 of TFLite to parse FlatBuffers and get the JSON
file that contains detailed information of the . tflite file.

ONNX Models. Open Neural Network Exchange (ONNX) is an
open format built to represent machine learning models. ONNX de-
fines a common file format to enable developers to use models with
a variety of frameworks and tools. ONNX platform has various tools
to support the exchange between common neural network model
formats (e.g., TensorFlow, PyTorch) and the ONNX model format.
For instance, the tf2onnx tool can transform the TensorFlow model
to the ONNX model accurately. The onnx2tf and onnx2pytorch trans-
form the ONNX model to corresponding TensorFlow and PyTorch
models, respectively. The onnx2tf tool only generates a low-level
saved model, which can just use the forward inference APIs (i.e.,
the generated model is not debuggable). Differently, the mechanism
of the onnx2pytorch is based on a rule list. which defines the rela-
tionship between ONNX operators and PyTorch operators. It will
first create a model instance by translating the ONNX model based
on the rule list and generate a forward function to define the data
flow at runtime. The converted PyTorch model is debuggable. Our
proposed reverse engineering method based on the ONNX platform
will process the non-debuggable components on the unified ONNX
level and then convert them to debuggable format. So, it can be
applied to multiple on-device formats such as TFLite, ONNX Run-
time, and Caffe. In contrast, other transformation pipelines may not
easily handle multiple on-device formats and need ad-hoc manners
to build different rules for different on-device model formats.

2.2 Adversarial Attacks for DL models

Adversarial attacks add perturbation that can be considered a spe-
cial noise to the original image to fool the DL models. Adversarial
attacks can be categorized into white-box attacks such as gradient-
based attacks [10, 13, 20, 2628, 31], and black-box attacks [3, 6-
8,14, 17, 18, 29]. Gradient descent (GD) is an iterative optimization
algorithm, used to find a local minimum/maximum of a given func-
tion. This method is commonly used in training DL models. For the
gradient-based (white-box) attack [13, 20], they use the gradient to
compute the perturbation that can increase the model loss. Query-
based black-box attacks [3, 5] estimate the gradients to compute the
perturbation, e.g., randomly update the perturbation to estimate
the right update direction. White-box attacks have full access to the
model structure and its parameters to enable gradient computing.
In black-box attacks, only partial information (i.e., model output)
about the model is available. Goodfellow et al. [13] show that adver-
sarial examples generated by surrogate models [30, 41] can fool the
target model. Therefore, for adversarial attacks on devices, Huang
et al. [16] and Cao et al. [4] evaluated the mobile model robust-
ness by generating attacks from surrogate models. However, they
heavily rely on the similarity between surrogate models and target
models. According to this, we propose the REOM to transform the
TFLite model to the PyTorch model, to explore the security issue of
model deployment.

3schema file (The link is too long to display)
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3 PRELIMINARY STUDY

Recall that the ONNX platform has provided various tools to sup-
port the exchange from neural network models to ONNX models.
In this preliminary study, we would like to investigate whether
these tools can be leveraged to transform a TFLite model (will be
regarded as a Tensorflow model) into a PyTorch model (i.e., TFLite

tf2onnx onnx2pytorch
model ———— ONNX model PyTorch model).

3.1 Harvesting On-device Models

To conduct this preliminary study, we need to first collect a set of
TFLite models that are actually included in Android apps. Since
there is no existing dataset containing a set of apps with TFLite
models, we have to construct such a dataset from scratch. To this
end, we resort to the AndroZoo dataset [21] to first collect a set
of real-world Android apps. AndroZoo is by far the largest app
set well maintained by researchers and has been widely leveraged
by researchers to support various Android-related studies. At the
moment, AndroZoo contains over 19 million Android apps. It is
extremely time-consuming for us to download and scan all of them
to locate TFLite models. For the sake of simplicity, we only focus on
the latest Google Play apps (published from 2021 to 2022) to fulfill
our study. In total, we have collected 173,905 apps (it takes more
than one month). After disassembling the apps, we find 674 of them
contain TFLite-related packages (i.e., org.tensorflow). All of these
apps are regarded as candidates to extract TFLite models. Among
674 apps, we were eventually able to extract 244 TFLite models,
which are then taken into account to fulfill our preliminary study.

3.2 Model Transformation Study

Figure 2 illustrates the working process of our preliminary model
transformation study. We would like to check if existing tools can
be leveraged to transform TFLite models into debuggable PyTorch
models. Since ONNX does not directly provide the tool for TFLite
models, we naively regard them as Tensorflow models to fulfill this
study, which is made up of three steps, as highlighted in Figure 2.

@ tf2onnx @nnx?pytorch @

TFLite model ONNX model PyTorch model

Figure 2: The naive transformation flow from compiled on-device
models to debuggable models in our preliminary study.

o Step-1: Extractor First, we extract TFLite models from Android
apps by applying the well-known apktool * tool to decompile
the apps. Apktool is one of the most popular tools proposed
for reverse engineering Android APKs. After decompilation, we
search for . tflite files in the decompiled folder.

o Step-2: tf2onnx After obtaining the TFLite model, we then trans-
form it to the ONNX model. The advantage of achieving the trans-
formation based on the ONNX platform is that: (1) The ONNX
model is intended to be easily modified. Adding or removing a
layer from an ONNX model requires just one line of code. (2)
Our transformation tool is easy to be applied to other on-device

“https://ibotpeaches.github.io/Apktool/
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Figure 3: Results of the naive transformation flow.

Table 1: Errors types in the failure cases of the preliminary study.
Note that one operator may cause multiple errors.

Errors Reasons Count | Related Operators
. uantization
Compatibility Structure Mismatch 156 Q R
Transformation
Quantization
Not Operators Mismatch 100 Data Processing
Implemented Computing
Customized
Operators Not Supported 24
Deprecated
. . . Transformation
Input Type Specification Mismatch 18 K
Computing

formats like caffe2 and ONNX Runtime. Specifically, once the on-
device caffe2 models are converted to ONNX model, the proposed
tool can be applied to convert the ONNX model to a debuggable
version.

o Step-3: onnx2pytorch After we convert the TFLite model to
an ONNX model, we then convert the ONNX model to the de-
buggable DL model, i.e., PyTorch model. Here we choose the
PyTorch model as the transformation target because the API
library of PyTorch is more stable than that of TensorFlow. In
addition, due to its flexibility, it is simpler for us to assemble the
parsed information into the debuggable PyTorch model.

Experiment results: In this work, we use all the 244 apps (i.e.,
244 TFLite models) identified in Section 3.1 to fulfill this study. Fig-
ure 3 summarizes the experimental results. Among the 244 models,
only 16 of them can be successfully transformed into PyTorch mod-
els. This preliminary approach yields a failure rate of 93.4%, making
it impossible to be adopted in practice to achieve our purpose, i.e.,
automatically transforming TFLite models to debuggable ones.

Error types: We then go one step further to check why some
models can be successful while majorities cannot. The prelimi-
nary transformation approach fails with three types of errors: (1)
Compatibility Error (156), (2) Not Implemented Error (124),
and (3) Input Type Error (18). Compatibility Error appears
when the model structure is not compatible with the debuggable
model format. For the Not Implemented Error, it appears when
the ONNX model has operators that are not in the transforma-
tion rule list. For the Input Type Error, it appears when the
onnx2pytorch assigns wrong inputs and parameters to the layer.
The detailed analysis can be found in Section 4.

Overall, our preliminary study shows that existing tools cannot
achieve the purpose of transforming TFLite models into debuggable
models. We, therefore, argue that there is a strong need to invent
new approaches to address this challenge. Motivated by this evi-
dence, we design and implement in this work a prototype tool called
REOM, which aims at transforming on-device models by resolving
the aforementioned errors.
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The fact that less than 10% of TFLite models can be auto-
matically transformed to debuggable PyTorch models by
existing approaches. It shows that there is a strong need
to invent new approaches to achieve the purpose.

4 APPROACH

We now detail our approach proposed to transform on-device TFLite
models into debuggable PyTorch models. Before presenting our
method, we first analyze the errors (see Table 1) in existing tools:

e Compatibility - Structure Mismatch: To accelerate the compu-
tation on mobile devices equipped with mobile CPU and mo-
bile GPU, compiled on-device models are optimized to contain
some different data types and model structures with debuggable
models. For example, float32 will be converted to uint8 when
compiling the debuggable model to the on-device model. When
converting the on-device model back to ONNX models, some
extra operators (e.g., quantization operators, transformation op-
erators) will be created to make it compatible with the ONNX
data types and structures. Since the extra structures are non-
debuggable, the structure mismatch will unfortunately result in
the failure of the transformation. In our approach, we propose
the Pruning Module to resolve this problem.

e Not Implemented - Operator Mismatch: Some compiled opera-
tors of on-device models are optimized for mobile computing.
The optimized operators transformed from TFLite model are
not compatible with the debuggable model format. For example,
when the data type of the on-device operator is uint8 (optimized
data type for on-device model), this operator will not be debug-
gable because DL frameworks like PyTorch and TensorFlow do
not have debuggable API for uint8. In addition, TFLite defines
many unique operators (i.e., mismatched operators for debug-
gable models) supported by its corresponding library. However,
such unique operators are not supported by other DL frame-
works (e.g., PyTorch, TensorFlow). Therefore, in this work, we
propose the Translation Module to bridge the mismatched
operators.

e Not Implemented - Operators Not Supported: Those customized
operators are not supported by other DL models, resulting
in TFLite cannot be directly transformed. For example, if devel-
opers want to implement an advanced Convolutional operator
in their model but this advanced function is not supported by
the current version of the on-device DL framework, they could
add their customized C/C++ implementation of the advanced
function to their TFLite model. Besides, developers can name this
customized operator and define the interface freely. So, other DL
frameworks cannot identify this customized operator because it
is not included in the operator library. This problem also exists
on the deprecated operators of TFLite models. Fortunately, on-
device operators are usually a subset of the debuggable operators’
library. Therefore, we propose Auto-matching Module to
identify the equivalent operators in the debuggable model
format to fulfill the transformation.

e Input Type - Specification Mismatch: The specifications of
some operators (e.g., computing operators, transformation oper-
ators) may vary in different model formats, such as the order of
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Figure 4: The overview working process of REOM. We use the (a), (b), and (c) to define the state of the model in REOM.

inputs and the range of parameters. Therefore, the setting of the
converted debuggable operators may be wrong. Because these
errors need to be resolved in an ad-hoc manner, we omit
them in this paper.

Therefore, we design and implement in this work a prototype
tool called REOM, which aims at removing the aforementioned
errors while maximizing the similarity between the on-device model
and the converted debuggable model. Figure 4 presents the overall
working process of our proposed REOM, which essentially contains
four steps to achieve its purpose, i.e., transforming a TFLite model
into a debuggable PyTorch model for security exploitation. The four
steps are @ Extractor, @ tf2onnx, @ Modifier, and @ onnx2pytorch.
The details of Extractor and tf2onnx can be found in Section 3.2.

4.1 Modifier

We now detail the Modifier of REOM with the three modules to
resolve the aforementioned problems, respectively.

Pruning Module: To solve the structure mismatch issue, we
propose Pruning Module. Before presenting technique details, we
first show an example of the structure mismatch in Figure 5. When
the on-device model (Figure 5(a)) tries to convert to the debuggable
format, some non-debuggable components are not compatible with
the debuggable format. As shown in green areas of Figure 5(b),
those non-debuggable components need to be processed before
connecting with other debuggable components. Therefore, the “ex-
tra” part will be produced, but it will confuse debuggable DL li-
braries because they do not consider this special case in many
functions like gradient computing. For example, in Figure 5, the
type of weights in FullyConnected layer is uint8, which cannot
be handled by ONNX operators and debuggable model format. To
address it, the uint8 tensor needs to be transformed by the formula:
y = (x —yo) X y’, where the yy and y’ are stored in the model files
and are the zero-point and scale parameters of this uint8 tensor.
After converting to ONNX format, it needs to attach an extra new
operator DequantizelLinear to achieve the above transformation.

Unfortunately, the TFLite-converted ONNX model with such
an extra branch is still not compatible with the debuggable model
format like PyTorch. To address this problem, the Pruning Module
is proposed to correct the mismatched structure so that it will be
compatible with the debuggable format. To remove the mismatched
structure, we first find the suspect non-debuggable extra operators
using pruning rules. Specifically, we analyze the ONNX operator
library to identify the operators that can be used to transform the
model weights (e.g., DequantizeLinear, Reshape, Transpose). These
operators are potential extra operators. The complete pruning rules
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T

list can be found in our code repository. If an operator conforms to
our definition of extra operators (i.e., the operator is in the pruning
list, uses the fixed tensor data as its input, and produces output
data as the next operator’s weights), we will remove the extra
operator, and compute the corresponding transformed weights for
debuggable models, e.g., using the transformation formula of the
extra operator y = (x — yp) X y’, which is shown in Figure 5(c), to
remove the non-debuggable branch.

Translation Module: Translation Module is used to solve the
operator mismatch issue. Different DL libraries have different speci-
fications (e.g., interface, parameters, and algorithm principle) for the
equivalent operators, especially for the on-device DL library and de-
buggable library. Some on-device operator (e.g., QuantizelLinear)
is not compatible with the debuggable format because DL libraries
do not provide support for those on-device-related operators in
their debuggable platform. So we cannot directly map the oper-
ator (i.e., mismatched operators) from the on-device form to the
debuggable version like existing tools to achieve our purpose.

To address this problem, the Translation Module translates the
mismatched operators (e.g..SpaceToDepth, Quantizelinear in
TFLite—ONNX—PyTorch) into several basic operators that are
supported by debuggable formats. For example, the formula of
Quantizelinear in TFLite and ONNX can be presented as:

y=0( +40) M
where the yo and y’ are the zero-point and scale parameters of the
operator, respectively. Note that, the x/y’ is float division. The &
is a saturation parameter that saturates the value to [0, 255], and
then converts its data type to uint8. To make it debuggable and
compatible with PyTorch, the QuantizelLinear operator can be
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Algorithm 1 Auto-matching

Input: supported debuggable operators list L, input operator oy,
similarity threshold &, random inputs I
Output: syntactic matched debuggable operator o,
1:If oxnotinL :
2: For i in range(lenth(L)) :
compute the D%, by o, and L[] using Equation 3
end For
Sort Dyo=[Dl,, ..., Dﬁf,"th(L) ] in descending order
For D), in Dy, :
If || for (D) = fo, (DIl < a:

return oy

X NN N s W

divided into two separate operators Add (matrix addition) and Div
(matrix division). Those two operators support the computation of
float values. The formula can be shown as:

y = Clip(Add(Div(x,vy),y0)), (2)

where the Clip clip all elements of input into the range [0, 255]
when the target data type is uint8. To automatically translate
the mismatched operators, we analyze the operator list of the DL
platform where we want to process the issue (e.g., ONNX in our
study), and identify which operator does not have the matched
debuggable operators. Then, we create a translation list that defines
the mapping from mismatched operator list LI to the debuggable

equivalence list LT. Note that we build translation rules for all
operators in the translation list. If the Translation Module finds an
operator that is in the translation list, it will replace the mismatch
operator with the equivalent operator combination.

Auto-matching Module: Auto-matching Module is used to
handle the customized or deprecated operators that are not sup-
ported by other debuggable model formats. This is because mo-
bile DL developers sometimes use customized implementations
on DL libraries to achieve their purpose. Sometimes they don’t
use the latest version of DL libraries to build their model, some
operators are deprecated in the latest versions when we try to
transform them. To enhance the exception-handling ability of our
method, we introduce the Auto-matching Module. The example
(TFL_L2_NORMALIZATION) is shown in Figure 6. Unfortunately, Py-
Torch does not support the TFL_L2_NORMALIZATION, hence does
not support the transformation of this operator.
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To this end, we propose a three-step syntactic matching ap-
proach to find an equivalent supported operator to replace the
non-supported operator, which is shown in Algorithm 1.

First, when our proposed tool REOM finds the non-supported
operator (ONNX operators in our tool), which is not in the operator
list of other DL model formats, the Auto-matching Module will
compute the distance between the supported debuggable opera-
tors list L and the non-supported operator. The similarity between
the op_types of the non-supported operator and the supported
debuggable operator can be obtained as follows:

= ZK—m (3)
1S1] +1S2]

where the D, is the similarity metric and 0 < Dy, < 1. The S; and

Sy are the keyword string of the non-supported operator and the

supported debuggable operator, respectively. K, is the number of

matched characters.

Second, we rank the supported operators list L as the distance
between the non-supported operator and the supported operator.
Then we can find the most similar supported operator o, with the
non-supported operator.

Third, the Auto-matching Module will replace the unsupported
operators with the most similar supported operator oy. Then, it cal-
culates the function similarity between the unsupported operators
and oy by comparing the output difference of original on-device
models (TFLite model in our study) and the modified model (ONNX
model in our study) with the same inputs I (the number of inputs
is 100 in our experiments). If the I difference ||f, (I) — foy(I)||2
between the non-supported operator and o, is smaller than a thresh-
old a (we set it to 0.1 in default), the o, is the matched operator.

For example, as shown in the (b)—(c) of Figure 6, the customized
(non-supported) operator of the TFLite-converted ONNX model
(TFL_L2_NORMALIZATION in Figure 6 (b)) is converted to equivalent
ONNX operator (LpNormalization in Figure 6 (c)) with the Auto-
matching Module.

Dyo

4.2 Converting to The Debuggable Model

After modifying the converted ONNX model, it will save the modi-
fied model as the new .onnx file. Then, we use the onnx2pytorch
tool to load the structure information and parameter of the ONNX
model and assemble them into the Python code using PyTorch API
It is also worth noting here that the generated debuggable model
will share the same structure and parameters as the on-device model
extracted from real-world Android apps. Consequently, the two
models should share the same capabilities. They should also share
the same attacking surfaces. In other words, the attack scenarios
applicable to the debuggable PyTorch model could be directly ap-
plied to attack the on-device TFLite model (indicated via dotted
line in Figure 4). We present the experimental results in Section 5.

5 EVALUATION

Towards checking if our research objective is achieved, we propose
to answer the following three key research questions.
e RQ1: How effective is our approach in achieving automated
model transformation?
e RQ2: How accurate is the transformation approach?
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Table 2: Transformation performance of the proposed REOM.

Error Types Reasons Count Success Fail
Compatibility Structure Mismatch 156 156 0
Operator Mismatch 100 100 0
NotImplemented
Operator Not Supported 24 6 18
Input Type Specification Mismatch 18 18 0

Table 3: Comparison between different o values of Algorithm 1.

Operator Not Supported 0 0.001 0.01 0.1 100
Success Cases 0 0 2 6 24
24 24 22 18 0

Fail Cases

e RQ3: Can on-device models be directly attacked via REOM-
based white-box strategies?

Dataset Construction In the evaluation section, we use the same
dataset construction strategy in Section 3.1 and answer the research
question using REOM.

5.1 RQ1: Effectiveness

In this part, we use all 244 apps (i.e., 244 TFLite models) to fulfill our
study. As shown in Figure 3, among the 244 models, only 16 of
them can be successfully transformed into PyTorch models
by existing tools. This baseline approach yields a failure
rate of 93.4%, making it impossible to be adopted in practice to
achieve our purpose, i.e., automatically transforming TFLite models
to debuggable ones.

In contrast, REOM is able to successfully transform 226 of
them, giving a success rate of 92.6%. Note that the 16 models that
can be handled by existing tools do not have the non-debuggable
component. For those models, the debuggable models produced
by our method are the same as the models generated by existing
tools. Table 2 further breaks down the detailed results with respect
to the three types of issues summarized previously. Note that a
given TFLite model may encounter several errors. Hence, the total
number of errors (i.e., 289) is slightly larger than the number of
TFLite models. All the failure cases are caused by the Operator Not
Supported issue, for which the Auto-matching Module cannot find
an existing ONNX operator that is equivalent to the customized or
deprecated TFLite operator.

Observant readers may have noticed that our approach has taken
the parameter « to determine whether the newly generated ONNX
operator (because of non-supported TFLite operators) should be
accepted in the Auto-matching Module. We now go one step deeper
to evaluate the sensitivity of this parameter. As shown in Table 3,
when « is set to be 0.1 (the default value), 6 of 24 models with custom
non-supported operators can be successfully converted (18 failures).
When decreasing this threshold, the failure rate will increase. In
the worst case, when « is set to zero, none of the non-supported
operator problems can be resolved. However, in another extreme
setting, when setting the « to be 100, all the non-supported opera-
tors can be resolved, i.e., mapped to newly generated operators that
are accepted by the debuggable model format. Subsequently, all the
TFlite models can be successfully converted. However, such trans-
formation will not make much sense as the transformed models
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Table 4: Demonstration of which operator of the TFLite model will
affect the transformation accuracy. We use the (min, max) to define
the typical difference range, where the min and max are the minimal
and maximal transformation differences for the TFLite model with
the specific operator.

Category Operator Difference Range
. . DequantizelLinear
Computing Difference . ] (0.001, 0.01)
Quantizelinear
. Resize
API Difference (0.001, 0.05)
Upsample

may not perform the same as their source models. In this work, the
default @ value 0.1 is set based on our empirical experience, under
which the output difference between the original TFLite model and
its PyTorch counterpart can be controlled within a distance of 0.1.

Answer to RQ1: The proposed REOM can successfully
transform over 90% of TFLite models to debuggable models.
Two out of the three modifier modules have achieved 100%
correctness, while our best-effort attempts implemented
in the remaining module have also been demonstrated to
be useful.

5.2 RQ2: Accuracy

We then compare the output similarity between the transformed
models and source models to evaluate the accuracy. Given a pair of
models (i.e., a TFLite model and its PyTorch counterpart), with the
same inputs, the accuracy of our approach is evaluated based on
the similarity of the outputs yielded by the two models. The similar
the results are, the higher the accuracy will be. In practice, we use
the collected 244 on-device models as the test set. We generate 100
random inputs as the specification of the TFLite model and com-
pare the outputs between the TFLite models and their debuggable
PyTorch versions. However, the output ranges of the on-device
models are different. To standardize the output difference between
the two models, we use the scaled mean transformation difference,
which can be calculated as follows:

k
1
d= E g 4
" Z, lyi — 4il, (4)
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Table 5: Classification accuracy of on-device models and converted debuggable models on test images. Each app has a different test dataset. The
dataset list can be found in the shared code repository. The TFLite models are collected from the work [16] and the TensorFlow Hub.

Models Fruit Skin cancer object Signlanguage Plant Cassava disease Plant disease Insect Bird
REOM 100.00% 80.51% 70.59% 98.71% 95.00% 91.76% 93.20% 96.48% 92.07%
Accuracy Source model | 100.00% 80.60% 70.62% 98.24% 95.08% 93.12% 93.20% 96.48% 92.50%
Difference 0.00% 0.09% 0.03% 0.47% 0.08% 1.36% 0.00% 0.00% 0.43%

where d represents the difference between the PyTorch model and
the TFLite model. The y; and yj; are the outputs of the TFLite model
and the converted PyTorch model, respectively. k is the element
number of the y;. It means we calculate the average difference for
each output data point. For example, if the output is an image, the d
is the average difference for each pixel. r is the range of the source
on-device model’s output. For example, if the data type of output
data is Uint8, the output range r is 255 — 0 = 255. However, we
cannot know the actual output range of the TFLite model when
the data type is Float32. To estimate the output range, we use
the r = max(y;) — min(y;) as the output range, where the max
and min are the functions to compute the maximal and minimal
value of a vector of matrix, respectively. Therefore, the estimated
difference in our experiments may be lower than the actual
difference because the output range in our calculation is
smaller than the actual value. Similarly, to compute the scaled
maximal transformation difference, the formula is shown as follows:

d = ~max(ly - §)). ©)
The result is highlighted in Figure 7. The transformed PyTorch
model generally has a very small difference compared with the
TFLite model. Most cases have a difference of less than 0.001.
Some cases have a difference from 0.001 to 0.08, which is also
small. For the cases where the transformation errors are larger than
0.1, the output debuggable model may have a large difference from
the source model. It means attackers cannot achieve the white-box
attacks based on our method for these cases. However, it will still
outperform the black-box attacks used in the existing attacking
evaluation studies [15, 16]. In addition, our method will not affect
the overall accuracy of models (cf. the accuracy difference of con-
verted models and source models in Table 5). It demonstrates that
the converted debuggable models have very similar accuracy
to the source on-device models. The difference exists because
the on-device models usually have 8-bit precision but PyTorch
debuggable formats only support 16 or 32-bit precision.

Besides, we analyze which operator of the TFLite model will
affect the transformation difference. In Table 4. We find two main
reasons that can affect the transformation difference. One is the
computational difference. Another one is the API difference. For
the computational difference, the converted PyTorch model runs
on the float32 data type. However, when the TFLite model has
some operators like DequantizelLinear and QuantizelLinear, it
will cause the computational difference between the TFLite model
and the converted PyTorch model. For the API difference, some
TFLite APIs and PyTorch APIs are fundamentally different. For
example, the Resize API of TFLite and PyTorch will use a basic
Interpolate operation. It determines how to compute the value
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of resized tensors. However, TFLite has more methods to imple-
ment the Interpolate operation. If the Interpolate operation
of TFLite layers is not supported by PyTorch, REOM will use a
substitute Interpolate operation to execute the Resize. It will
cause the output of PyTorch models to be slightly different from
the output of TensorFlow models.

Answer to RQ2: The proposed REOM approach can
achieve high accuracy of the transformation. The perfor-
mances of the generated PyTorch models are generally very
similar to their original on-device TFLite models, which
enables security exploitation in the white-box setting.

5.3 ROQ3: Supporting White-box Attacks

We evaluate the attacking performance of REOM to check whether
attackers can directly perform white-box attacks for on-device mod-
els. We choose nine TFLite classification models of the work [16]
and the TensorFlow Hub to answer this research question. We
choose these models because we can find large-scale public datasets
(see our code repository) to evaluate the attack success rate to show
the effectiveness. For the fruit app, we identify 848 images whose
categories correspond to the task scope of models and then use
these images as the test set. For other apps, we randomly sample
10000 images from the large-scale datasets as test sets.

Then, we evaluate the attacking performance of the on-device
model using the proposed REOM. In [4, 16], they focus on gener-
ating adversarial attacks by the surrogate model to mislead the
target on-device model in the black-box setting. The performance
of adversarial attacks generated by the surrogate model relies on
the similarity between the target model and the surrogate model.
Our study proposes a method for transforming the compiled TFLite
model into a debuggable model, eliminating the need to search for
or train a surrogate model in order to achieve white-box-like attack
performance. Therefore, we will go in-depth into the on-device
adversarial attacks and show how our tool can be a general method
to evaluate the robustness of the on-device model.

We calculate the attack success rate (i.e., fooling rate) by p = 7
where n and m are the number of successful adversarial examples
and the number of images that can be correctly classified by the
model, respectively. Note that we only perform attacks on the image
which is correctly classified by the target model. n is the number
of successful adversarial examples. For non-targeted attacks, the
attack succeeds when the target model outputs the wrong labels
for the inputs. For targeted attacks, the attack succeeds when the
target model outputs a specific wrong label. Generally, targeted
attacks are more difficult to produce than non-targeted attacks.

n
5
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Figure 8: The Fooling rate of the debuggable model converted by REOM and the source on-device models using black-box attack methods. It
shows that converted models have a similar fooling rate on black-box attacks with source models.

Table 6: Fooling rate (%) of non-targeted and targeted attacks using white-box attack methods. ‘%,’: the £, distance (perturbation magnitude).
‘BIM’: Basic Iterative Method [20]. ‘PGD’: Projected Gradient Descent for generating attacks [26]. ‘REOM’: we generate attacks on the converted
PyTorch model and transfer the adversarial example to attack the target on-device model. ‘Baseline’: we collect the pre-trained model like the
works [15, 16] and fine-tune the model on our collected dataset like the work [4], then transfer the attacks to attack the target on-device model.

Non-targeted Attack

Fruit Skin cancer ImageNet Signlanguage  Plant  Cassava disease Plant disease  Insect Bird
) Attack | BIM|PGD  BIM[PGD  BIM|PGD  BIM|PGD  BIM|PGD BIM|PGD BIM[PGD  BIM|PGD  BIM|PGD
oo REOM | 290290  191[191  89.7789.03  0.60/0.60 7251|7231  57.89|57.97 0.75/0.80  41.61|41.82 56.08|56.00
Baseline 0lo 0o 4.40|4.56 0]0 2.67]2.64 1.18]1.31 0]0 0.78/0.62  1.32|1.30
REOM |28.12]28.12  20.70|20.58 96.14]96.14  31.89|31.05  80.53]80.40 67.20/67.11 14.75[14.79  53.73|53.77 68.37|67.99
Baseline | 0.220.22  0.31/0.31  5.73[5.62 2.98|2.74  19.74]19.59  8.37|8.37 0.36/0.36  1.82|1.86  4.51]4.51
REOM {99.78]99.55 100.00[/100.00 99.65/99.65 100.00]100.00 99.96]99.92 99.87|99.87 100.00]100.00 96.31|96.27  99.49]99.49
Baseline | 3.79]4.02 2.67|3.02 10.78]10.23  12.93|12.42  41.42|41.40 30.82|30.86 1.96]1.96 24.32|23.89 27.68 | 27.72
Targeted Attack
#,  Attack | BIM[PGD BIM[PGD BIM[PGD BIM|PGD  BIM|PGD  BIM[PGD BIM[PGD BIM|PGD BIM[PGD
REOM 0l0 1.36/1.36  3.97|3.97 0.04]0.08 0.86/0.90  19.09]19.09 0.12/0.12  0.27]0.27  1.02]0.90
0.01 Baseline 0]0 0]0 0]0 0]0 0[0 0]0 0[0 0]0 0[0
0.1 REOM 1.61|1.61 10.79]10.79  14.94|15.93 3.63|3.63 3.63|3.67 28.08]28.12 1.09|1.09 1.06|1.13 3.64(3.71
Baseline 0]0 0.76]0.76 0]0 0[0 0[0 2.04|2.11 0[0 0]0 0[0
10 REOM |86.18|86.41 99.88/99.88 98.21]98.41  89.74/89.74  96.09|95.90 92.56(92.61 90.12]90.34  72.13|71.89 96.17|96.13
Baseline | 1.32|1.37 413|415  0.02[0.02  2.95/2.95  3.72[3.68  10.54]10.59 127]1.23  2.94]2.88  0.64/0.68

We first demonstrate how is the similarity of the converted
model and the source on-device model (i.e., baseline) on black-
box attacks, which is shown in Figure 8. We use two different
black-box attack methods, one individual method Boundary [3]
that needs to generate different attack perturbations for each input
and one universal method QB-UAP [38] that produces a universal
perturbation for all inputs. They do not need gradient information
of the attacked model to evaluate the robustness of models. Here
we set the £, attack distance to 15. The hyper-parameters of the
attack method in our experiments are the same as the parameters in
the original paper. We find the converted model has a similar
black-box attack performance to the source on-device model.

Then, we use the method proposed by Huang et al. [16] to collect
similar pre-trained models with the target mobile models from the
TensorFlow Hub based on the structure and weights similarity, and
then fine-tuned them on the training set as the surrogate model. We
choose the attacks generated by the surrogate model as the baseline.
For REOM, we transform the TFLite model into the PyTorch model
as the surrogate model. Then, we compare the fooling rate between

our method and the baseline. We use two well-known white-box
attack methods, BIM [20] and PGD [26], to generate the attack. They
are the most common methods used in the robustness evaluation
for DL models [42]. We set the number of iterations to around 500.
The step size of each iteration is set to around 0.0001, 0.001, and 0.05
for the perturbation distance £, are 0.01, 0.1, and 1.0, respectively.
As the results are shown in Table 6, if we use the proposed tool
to get the converted PyTorch model as the surrogate, the attack per-
formance will significantly increase compared with that leveraging
conventional transfer attacks. The debuggable models can indeed
support stronger attacks. Compared with the baseline, attackers
can achieve higher attack success rates (10.23%—89.03% in
ImageNet apps) with a hundred times smaller attack pertur-
bations (1.0—0.01) based on the proposed REOM framework.
The visualization of different perturbation distances is shown in Fig-
ure 9. REOM-based attacks can achieve high attack performances
using small perturbations that are imperceptible to humans. These
results show that the converted model can be considered the de-
buggable version of the source model for security exploitation.
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Figure 9: The visualization of different perturbation distances for the image classification model.

e Y

Answer to RQ3: The proposed REOM approach is indeed
useful for helping security analysts evaluate the security
of on-device TFLite models. Experimental results demon-
strate the converted model can be considered as the de-
buggable version of the source model for security exploita-
tion. On-device models can indeed be directly attacked via
REOM-based white-box strategies.
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Figure 10: The scaled difference between the Caffe2 models and the
converted debuggable model. Our tool can transform 9 of 10 Caffe2
models. The x-axis refers to the ID (0-8) of the Caffe2 models.

6 DISCUSSION

In this section, we will discuss the genericity, other properties of
our method, and potential defense strategies.

Generalizability of Our Approach: Although our method
is designed for the most commonly used on-device model format
TFLite, our approach should also work for other formats because the
Modifier handles the non-debuggable component in the ONNX level,
which has a unified model representation. we believe our approach
should also work for transforming other on-device formats like
Caffe2 to the debuggable model format. To experimentally validate
this, we collect 10 Caffe2 models from the Caffe2 model zoo [34] to
evaluate the effectiveness of REOM on the other on-device format.
By default, only two out of the ten models can be successfully
handled by the existing toolchain. We then integrate our approach
into the process by applying our Modifier to automatically modify

1885

Non-debuggable
weights 12 Translation Module

Equivalent Op

combination

l Mismatched Op Fm———————— b
Extra Op Weights e v

Pruning Module

— [ % |

Auto-matching Module
Unknown Custom Op Equivalent Op
—

r—olp—w Ad-hoc manrfr o
ification mit I ] v Weights
! !
@ (b)
Figure 11: The meta-model of how our REOM solves the four prob-
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the intermediate ONNX model generated by the built-in conversion
tool of Caffe2. Now, 9 of 10 Caffe2 models can be transformed into
PyTorch models. All the converted models have a scaled difference
less than 3 X 1078, as shown in Figure 10. It shows REOM is indeed
generic and can handle multiple on-device formats. However, if
the on-device model cannot be converted to the ONNX model,
our method does not work. As for our future work, we commit to
evaluating and enhancing the generalizability of our approach with
more on-device models.

Although our method is generic, some parts (e.g., translation
rule list) of our approaches may need to be updated frequently to
support the future versions of DL model formats or adapt to other
model formats. As shown in Figure 11, The green arrow means
this problem exists because of fundamental differences between the
non-debuggable models and debuggable models, i.e., having a clear
definition and can be solved by a unified solution. The dotted yellow
arrow means this problem exists because of occasional differences
between the non-debuggable models and debuggable models, e.g.,
the solution may be various in different versions of DL libraries.
For example, some operators are debuggable in this version but
may be non-debuggable in the next version.
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In addition, we use adversarial attacks to evaluate the effec-
tiveness of our method. The process of producing other kinds of
attacks [12, 37] based on the proposed REOM is similar. Attackers
need to first get the debuggable model from the on-device model
and then generate other attacks. However, the attack generation
for different kinds of attacks may be different. For example, model
inversion attacks [12] use the debuggable model to find the input
that can produce the same output as the source on-device model.

On Increasing the Attack Surface of on-device models: Ex-
isting studies [15, 23, 36] for evaluating the robustness of on-device
models cannot access them as white-box ones. We conduct this
study to explore the real risks of DL models on devices. It indicates
attackers can fully access the on-device model through reverse
engineering for most real-world Apps. Our experimental results
demonstrate that the converted debuggable version of on-device
models can indeed have a similar prediction performance compared
with the original model. This result strongly supports our hypothe-
sis that it is indeed possible to conduct direct white-box attacks for
target on-device models. More importantly, the Direct white-box
method using REOM can significantly increase the attacking per-
formance, and achieve higher attack success rates (10.23%—89.03%)
with a hundred times smaller attack perturbations (1.0—0.01). So,
existing studies [15, 23, 36] for evaluating the robustness of on-
device models usually miss the fact that attackers can bridge the
gap by reverse engineering. Our paper leverages empirical software
engineering methods to reveal the real risk of on-device models,
which is underestimated by the existing studies.

Enabling the white-box testing: Our study enables direct test-
ing on deployed DL models like TFLite models. Although there are
many white-box testing methods to evaluate the DL models [25, 33],
these methods are designed for debuggable DL models. However,
the deployed model may not be debuggable (or differentiable), such
as the TFLite model. Existing white-box testing strategies, which
are more efficient than black-box ones, cannot be directly applied to
the on-device models. Therefore, our contribution lies in enabling
direct white-box testing of compiled DL models.

Potential defense strategies: The observation from the eval-
uation of our method shows reverse engineering the on-device
model relies on the effectiveness of transformation rules. At the
moment, The proposed REOM can successfully transform over 90%
of TFLite models into debuggable models as almost all on-device
operators (226 cases) can be reverse-engineered into debuggable
ones. There are indeed some corner cases for which REOM fails
because of customized operators (18 cases). Except for this, we
believe there might be more options for defending against direct
white-box attacks [24]. One possible approach developers could
consider is to split models, e.g., by defining multiple sub-models
in training and then compiling them into different model files. At-
tackers need to understand the source code (the code in apps is
usually obfuscated) to know how to assemble them. However, this
method may increase the inference time of on-device models be-
cause it needs to load and parse the model twice. Another approach
could be to implement model obfuscation [40], e.g., by replacing
the keyword of the conv2d operator to a random string, and build
a compatible customized TFLite library. However, this method may
increase memory and time consumption because it needs to parse
the obfuscated information.
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7 THREATS TO VALIDITY

We now discuss the potential threats to the validity of this work.

First, our proposed conversion tool REOM is based on the ONNX
platform, and we evaluate its performance on TFLite models and
caffe2 models. However, some on-device model formats may have a
higher level of security (e.g., do not use high-level representations
like TVM models), which may disable the model parsing based
on the operator-to-operator transformation rule list, including our
approach proposed in this work. In this case, those on-device models
are safe. However, reverse engineering methods may overcome this
problem by modifying the conversion rules, e.g., building a mapping
list from ONNX operators to TVM model representations.

Second, the development of the DL library is in rapid change. It
may affect the performance of reverse engineering when the library
updates the model format or conducts other major evolutionary
changes. In such a case, the reverse engineering tool may fail to
convert on-device models to debuggable versions. Therefore, we
argue that there is a strong need for our approach to be aware of
the evolution of given DL frameworks.

8 CONCLUSION

This study evaluates the importance of developing a reverse engi-
neering tool that can transform the TFLite model into the debug-
gable PyTorch model. Such transformation can enable attackers
to perform direct white-box attacks for evaluating the vulnera-
bility of on-device models. To achieve this, we propose a REOM
framework to transform the on-device model into the PyTorch
model. Our proposed REOM has three steps: (1) first, we use the
tf2onnx tool to convert the TFLite to the ONNX model. (2) Second,
we propose a three-module modifier, which has Pruning Module,
Translation Module, and Auto-matching Module. It can modify the
ONNX model to make it compatible with the debuggable PyTorch
format. (3) Finally, the modified ONNX model can be successfully
transformed into the PyTorch model by the onnx2pytorch tool. Ex-
periments show the REOM can effectively transform most TFLite
models to PyTorch models, with small transformation differences
compared with the original TFLite model. Then, we test our method
on adversarial attacks and find that on-device models can be directly
attacked via white-box strategies. The current model deployment
strategy is at serious risk. it enables attackers to perform white-box
attacks on on-device models. In future works, we will comprehen-
sively analyze the security and privacy issues of on-device models
using the proposed REOM.

9 DATA AVAILABILITY

We provide an archival repository of our artifact by Software Her-
itage, which links to our Github repository. We also provide a
Docker Image for users to reproduce our results.
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