
DynaMO: Protecting Mobile DL Models through Coupling
Obfuscated DL Operators

Mingyi Zhou∗
Beihang University

Beijing, China
mingyi.zhou@monash.edu

Xiang Gao
Beihang University

Beijing, China
xiang_gao@buaa.edu.cn

Xiao Chen
University of Newcastle
Callaghan, Australia

xiao.chen@newcastle.edu.au

Chunyang Chen
TU Munich

Heilbronn, Germany
chun-yang.chen@tum.de

John Grundy
Monash University
Clayton, Australia

john.grundy@monash.edu

Li Li†
Beihang University, Beijing

Yunnan Key Laboratory of Software
Engineering, China
lilicoding@ieee.org

ABSTRACT
Deploying deep learning (DL) models on mobile applications (Apps)
has become ever-more popular. However, existing studies show at-
tackers can easily reverse-engineer mobile DL models in Apps to
steal intellectual property or generate effective attacks. A recent
approach, Model Obfuscation, has been proposed to defend against
such reverse engineering by obfuscating DL model representations,
such as weights and computational graphs, without affecting model
performance. These existing model obfuscation methods use static
methods to obfuscate the model representation, or they use half-
dynamicmethods but require users to restore themodel information
through additional input arguments. However, these static meth-
ods or half-dynamic methods cannot provide enough protection
for on-device DL models. Attackers can use dynamic analysis to
mine the sensitive information in the inference codes as the correct
model information and intermediate results must be recovered at
runtime for static and half-dynamic obfuscation methods. We as-
sess the vulnerability of the existing obfuscation strategies using an
instrumentation method and tool, DLModelExplorer , that dynam-
ically extracts correct sensitive model information (i.e., weights,
computational graph) at runtime. Experiments show it achieves
very high attack performance (e.g., 98.76% of weights extraction
rate and 99.89% of obfuscating operator classification rate). To de-
fend against such attacks based on dynamic instrumentation, we
propose DynaMO, a Dynamic Model Obfuscation strategy simi-
lar to Homomorphic Encryption. The obfuscation and recovery
process can be done through simple linear transformation for the
weights of randomly coupled eligible operators, which is a fully
dynamic obfuscation strategy. Experiments show that our proposed
∗This work was partially done when Mingyi Zhou was a PhD student at Monash
University
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1248-7/24/10
https://doi.org/10.1145/3691620.3694998

strategy can dramatically improve model security compared with
the existing obfuscation strategies, with only negligible overheads
for on-device models. Our prototype tool is publicly available at
https://github.com/zhoumingyi/DynaMO.

KEYWORDS
SE for AI, AI safety, on-device AI
ACM Reference Format:
Mingyi Zhou, Xiang Gao, Xiao Chen, Chunyang Chen, John Grundy, and Li
Li. 2024. DynaMO: Protecting Mobile DL Models through Coupling Obfus-
cated DL Operators. In 39th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE ’24), October 27-November 1, 2024, Sacra-
mento, CA, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3691620.3694998

1 INTRODUCTION
More and more mobile applications (Apps) and IoT devices are
leveraging deep learning (DL) capabilities. Deploying DL models
on such devices has gained great popularity as it avoids transmit-
ting data and provides rapid on-device processing. It also enables
applications to access their DL model offline. As the computing
power of mobile and edge devices keeps increasing, it also reduces
the latency of model inference and enables the running of large
on-device models.

However, as such DL models are directly hosted on devices, at-
tackers can easily unpack the mobile Apps, identify DL models
through keyword searching, extract key information from the DL
models, formulate attacks on the models, or even copy them and
reuse them in their own software. This accessible model key infor-
mation thus makes it easy to launch attacks or steal the model’s
intellectual property [38]. To protect such on-device DL models,
TFLite, the most commonly used on-device DL model framework,
compiles the general DL model (such as TensorFlow and PyTorch
models) to TFLite models, which disables direct white-box attacks.
This is done by disabling the gradient calculation of the on-device
models, which is essential for conducting effective white-box at-
tacks. Such models are called non-differential models (i.e., non-
debuggable models). Such model compilation makes it hard for
attackers to reverse engineer the on-device model. However, these
on-device platforms still suffer from significant security risks. Re-
cent attack methods [6, 13, 18, 38] can parse model information in

https://orcid.org/0000-0003-3514-0372
https://orcid.org/0000-0001-9895-4600
https://orcid.org/0000-0002-4508-5971
https://orcid.org/0000-0003-2011-9618
https://orcid.org/0000-0003-4928-7076
https://orcid.org/0000-0003-2990-1614
https://doi.org/10.1145/3691620.3694998
https://github.com/zhoumingyi/DynaMO
https://doi.org/10.1145/3691620.3694998
https://doi.org/10.1145/3691620.3694998

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Mingyi Zhou, Xiang Gao, Xiao Chen, Chunyang Chen, John Grundy, and Li Li

the on-device model (e.g., .tflite) files and then reverse engineer
them.

Recent model obfuscation approaches propose to use static or
dynamic methods to obfuscate the representation of on-device mod-
els [3, 36, 37]. Such DL model representations produced by model
obfuscation methods cannot be understood by automatic tools or
humans, but will not affect the model performance et al. [37]. The
information inside model representations (e.g,.tflite files) is pro-
tected by elaborating static obfuscation strategies, e.g., operator
renaming. However, DL models obfuscated by fully static meth-
ods must have the same computing process (i.e., the whole data
computing process from inputs to outputs) as the original model.
The Mindspore platform [3] uses a ‘half-dynamic’ approach that
produces an obfuscated model that defines different computing
processes to the original model, requiring additional input argu-
ments from users to restore the correct computing process at the
runtime. As developers need the correct input arguments to get the
correct model output in mobile Apps, attackers can also find the
arguments by unpacking the App and extracting the actual API call-
ing steps [24]. This ‘half-dynamic’ obfuscation can be considered a
special form of static DL model obfuscation.

To analyse and understand the limitations of these current static
or half-dynamic obfuscation strategies, we designed a dynamic
instrumentation method, DLModelExplorer . DLModelExplorer can
identify the actual inference function of each operator, extract the
sensitive data (e.g., model weights), and identify the obfuscating
components of the obfuscated DL model through dynamic instru-
mentation. Our tool can recover nearly all obfuscated information
to the original form (e.g., 100% of weights extraction rate and 99.87%
operator classification accuracy). This shows a major need to use
robust obfuscations that can defend against dynamic instrumenta-
tion. We then propose a fully dynamic obfuscation strategy, that
we call Dynamic Model Obfuscation and build a tool DynaMO to
realiase it. DynaMO adopts an idea similar to Homomorphic En-
cryption to randomly sample eligible operators to form obfuscation
propagation paths to obfuscate the information from the start of
the path and recover the results at the end of the path, thus building
a random obfuscation-recovery operator pair. The process better
secures the obfuscated model by the intermediate results and model
information inside the obfuscation propagation path is obfuscated
and will no be recover. The obfuscation and recovery process can be
performed through simple linear transformation of the DL model
weights, which avoids introducing overhead to the inference pro-
cess and is hard for attackers to identify. Such dynamic DL model
obfuscation can prevent instrumentation methods from collecting
correct information about the inference code of each operator. Our
experiments show that our method can significantly secure the
model information compared with existing mobile DL model obfus-
cation strategies. Our proposed approach also introduces negligible
overheads to the model inference.

The key contributions in this work include:

• We propose an attacking method using dynamic instrumentation
to demonstrate key limitations with existing model obfuscation
strategies. This can automatically acquire real information from
the model inference functions at runtime.

• We analyse the limitations of existing obfuscation methods and
propose a novel solution that can defend against the proposed
instrumentation. It introduces obfuscation to the intermediate
results of model inference.

• We have shown that our DynaMO method can significantly in-
crease the obfuscation in the model inference process with only
negligible performance and efficiency loss compared with exist-
ing obfuscation strategies.

• We open-sourced our prototype tool DynaMO [35] in a GitHub
repository: https://github.com/zhoumingyi/DynaMO.
In the following sections, we provide a motivation for our work

and introduce the basic background of this study. We then conduct
an experiment to demonstrate the key limitations of static and half-
dynamic obfuscation methods. We propose a new approach and
tool, and evaluate this on real-world mobile DL models. We discuss
key findings, limitations and future research directions.

2 BACKGROUND AND RELATEDWORKS
2.1 Terminology
According to their defending performance against different kinds of
attacks, we use static method and dynamic methods to distinguish
the different obfuscation methods. We call the existing model ob-
fuscation methods [37] as static model obfuscation as they only
obfuscate the model representation in the compilation. So, they can
just defend against the attacks based on static analysis for on-device
models. In contrast, our method is dynamicmodel obfuscation as
it can obfuscate the model information that is generated at runtime.
Thus, it can defend against dynamic instrumentation.

2.2 DL Frameworks
Deep Learning (DL) Frameworks: The open-source community

has developed many well-known DL frameworks to facilitate
users to develop DL models, such as TensorFlow [5], Keras [7], and
PyTorch [22]. These frameworks provide standards for developing
DL models [10]. PyTorch is one of the latest DL frameworks which
has gained academic user popularity for its easy-to-use and high
performance. In contrast, TensorFlow is widely used by industry to
develop new DL-based systems because it has the most commonly
used on-device DL library, Tensor Flow Life (TFLite). TFLite is the
most popular library for DL models on smartphones, as it supports
various hardware platforms and operation systems.

2.3 On-device DL Frameworks
On-device DL Frameworks: TensorFlow provides a tool Ten-

sorFlow Lite Converter1 to convert TensorFlow models into TFLite
models. A compiled TFLite model can then be run on mobile and
edge devices. However, it does not provide APIs to access the gra-
dient or intermediate outputs like other DL models.

Traditionally, on-device models are released as DL files that are
deployed on devices. Mobile app code then accesses these models
through a dedicated DL library, such as the TFLite library if the
AI model is developed using the TFLite framework. Each model
file contains two types of information: computational graph and
weights, which record the model’s architecture and parameters

1https://www.tensorflow.org/lite/convert/index

https://github.com/zhoumingyi/DynaMO
https://www.tensorflow.org/lite/convert/index

DynaMO: Protecting Mobile DL Models through Coupling Obfuscated DL Operators ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

tuned based on the training dataset, respectively. Such a computa-
tional graph is usually a multi-layer neural network. In the network,
each layer contains an operator that accepts inputs (i.e., the out-
puts of the previous operator),weights (i.e., stored in the dedicated
file that is pre-calculated in the training phase), and parameters
(i.e., configuration of the operator. For example, the conv2d layer
in TFLite requires the parameters of stride size and padding type.
Their parameters will affect the outputs of layers.) to conduct the
neural computation and outputs the results for the next operator.

2.4 DL Model Attacks
DL models deployed on devices are subject to a range of attacks [13,
18, 21, 32, 34, 39]. These can include tricking the DL model with
perturbed inputs into, e.g., classifying an image incorrectly; extract-
ing model information to facilitate other attacks; stealing a copy
of the model (which may have been very expensive to produce)
for use in one’s own application; and others. These attacks can be
black-box [13, 18, 33] or white-box [34]. Access to DL components
and/or access to DL models facilitates these attacks.

2.5 Code Obfuscation
Code obfuscation methods were initially developed to hide the
functionality of malware. The software industry also uses it against
reverse engineering attacks to protect code IP [25]. Code obfusca-
tors provide complex obfuscating algorithms for programs like JAVA
code [8, 9], including robust methods for high-level languages [28]
and machine code level [31] obfuscation. Code obfuscation is a well-
developed technique to secure the source code. However, solely
relying on traditional code obfuscation approaches cannot effec-
tively protect on-device models, especially in terms of protecting
the structure of DL models and their parameters.

2.6 Model Obfuscation
To prevent attackers from obtaining detailed information on de-
ployed DL models, model obfuscation has been proposed. This
obfuscates model representations such as the weights and model ar-
chitectures [37]. The renaming and parameter encapsulation can pre-
vent most model parsing or reverse engineering methods from ex-
tracting the key information (e.g., weights and computation graph)
of the deployed model. In the scenarios where computational costs
are critical, the neural structure obfuscation and shortcut injection
do not introduce any additional overhead as they just add mislead-
ing information to the model representation but will not modify
any inference process. For structure obfuscation, developers can
use shortcut injection and extra layer injection. These methods can
increase the difficulty of understanding the model structure of the
deployed models.

The most vulnerable obfuscation methods are neural structure
obfuscation and shortcut injection. These do not change any infer-
ence process but just use to mislead the attacker when parsing the
model information. For neural structure obfuscation, attackers can
analyse the real data flow in the model inference process to obtain
the real neural architecture from the shape of intermediate data.
TFLite actually provides an official API to get such information.
For shortcut injection, we can slightly modify the model like the
paper in [18] to remove each shortcut and check whether the model

inference works well. We can identify the obfuscating shortcut that
will not actually be used in the inference. However, we cannot do
the same process for extra layer injection because the obfuscating
extra layer actually participates in the model inference (although it
will not affect the model output). Therefore, in our study, we mainly
focus on analysing the robustness of three obfuscation methods
(shown in Figure 1): i.e., renaming, parameter encapsulation, and
extra layer injection.

2.7 Motivation for Our Work

wripyx

mjzdmh

fsebwa

wripyx::eval(input){
 weights=load_weights(…)
 output=inference(input, weights)
}

mjzdmh::eval(input){
 output=obfuscate_func(input)
}

Conv2d
Weights

Softmax4

Original model

Obfuscated
model

Original
DL API library

Obfuscation

Parsing
softmax::eval(input){
 output=inference(input)
}

conv2d::eval(input, weights){
 output=inference(input, weights)
}

fsebwa::eval(input){
 output=inference(input)
}

Customised
DL API library

Parsing

Figure 1: Demonstration of existing model obfuscations [37].
Here, existingmodel obfuscation hides the weights of conv2d
operator, renames the original operator name to random
strings (conv2d → wripyx), and injects an extra obfuscating
operator (i.e., mjzdmh). The customised DL API library is gen-
erated to execute the inference of the obfuscated model. The
function {OP_NAME}::eval is the code implementation of the
operator’s forward inference. The extra operator mjzdmh only
has an obfuscating function obfuscate_func to copy the in-
put value to the output.

Statically obfuscated DL model representations on mobile de-
vices are still directly exposed to threats. As shown in Figure 1,
an original DL API library will use the operator’s name to locate
the code implementation of the operator’s forward inference to
build a correct function call graph. We refer to this as the infer-
ence code of DL operators in this paper. Although the name of
the obfuscated DL operators is randomly generated by renaming,
e.g., conv2d → wripyx, attackers can still use the operator’s name
to locate the inference code for each operator. For example, when
the DL library gets an operator’s name {OP_NAME}, it will use the
function {OP_NAME}::eval to perform the forward inference of
the operator.

Existing model obfuscation strategies use static or half-dynamic
ways to obfuscate model representation. To produce correct model
outputs, each obfuscated information or its produced results needs

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Mingyi Zhou, Xiang Gao, Xiao Chen, Chunyang Chen, John Grundy, and Li Li

to be recovered in the inference code of operators at runtime.There-
fore, attackers can use dynamic analysis to extract the cor-
rect model representation from the DL model’s inference
code at runtime. For example, in Figure 1, attackers can hook a
data collection function to the wripyx::eval to obtain the correct
model weights. In addition, they can modify the obfuscate_func
function at runtime to identify whether an operator is an extra ob-
fuscating operator (the extra operator should not affect the model
output [37]).

2.8 Research Questions
To assess and enhance the robustness of existing mobile DL model
protections, this study aims to address the following key research
questions:
• RQ1 - What are the limitations of existing model obfusca-
tion methods?

• RQ2 - How can we better defend DL models against dy-
namic instrumentation attacks?

• RQ3 - How efficient is our proposed obfuscation strategy?

3 RQ1: MODEL DEOBFUSCATION
In this study, we use the most commonly used on-device model on
Android, TFLite models, as our target.

3.1 Threat Model
The on-device DL models and their corresponding third-party API
library used for model inference are packed into mobile applica-
tions on devices like Android. In the model deobfuscation process,
attackers need to unpack the mobile application using reverse en-
gineering tools like apktool [2] to get the on-device DL models and
related API libraries. The DL model representation is usually stored
in a separate model file such as .tflite files for TFLite models. As
the existing commonly used DL platforms are usually open-sourced
like TensorFlow, PyTorch, and ONNX, even if the on-device model
has been obfuscated, attackers can obtain the name of DL operators,
such as a random string, used in the model inference for parsing the
computational graphs. Thus, attackers can use the collected names
of each operator to identify the actual inference function of each
operator in the API library, because DL libraries use the operator
name to determine the actual inference function at runtime.
void {op_name }:: Eval {

// Create essential data for the operator

TfLiteTensor* input = create_input(input_data);

TfLiteTensor* weights = create_weights(weights_data);

ConvParams params = create_params(paras_data);

TfLiteTensor* output;

// The computing function for operator

multithreaded ::Conv(params , input , weights , output);

}

Listing 1: Simplified backend inference function of Conv2d
operator for running on a multithreaded CPU.

After identifying the inference function of each DL operator,
attackers do not need to understand all the compiled code used
for the operator inference in the DL API library, which is a very
complex task. But as the source code of TFLite and its related tools
are open-source, for example, they can identify the API of loading

the weights_data into the memory and be used to build the cor-
responding TFLite tensor (i.e., TfLiteTensor* weights in Listing
1). Note that the construction processes of weights are the same in
different DL operators. Thus, attackers can synthesise test samples
and use dynamic instrumentation analysis to hook a data collection
function in the inference code to get the real model information.

3.2 DLModelExplorer
Existing model obfuscation methods can obfuscate multiple kinds
of model information such as the functionality of operators (i.e.,
operator name), model weights, neural architectures, and the spatial
relationship among operators. It is hard for attackers to parse the
model representation without any auxiliary information. However,
the model representations must store the names of the operators to
provide the information onwhich inference codes need to be used to
produce the model outputs. Attackers can use the operator’s name
(even if it is obfuscated) to identify the inference code of operators,
thus attackers can use dynamic instrumentation and analysis to
extract the correct model information inside the inference code.

Overview. The overview of our proposed method DLModelEx-
plorer is shown in Figure 2. (1) Our method DLModelExplorer first
parses the obfuscated model and determines which inference func-
tion will be used at runtime for each operator. (2) Then, our pro-
posed tool can use the instrumentation method to hook a data
collection function to the construction process of model weight
data. This function can automatically extract the weights of each
operator and save them into a separate file. (3) Next, our tool will
automatically modify the actual inference function for each oper-
ator to filter out which operator is the obfuscating operator. The
obfuscating operator produces the output that is equal to the input
or modifies the output but will not change the output of the next op-
erator. (4) Finally, after getting the weights and the real computation
graph of the on-device models. Our tool will then analyse the rela-
tion between inputs, outputs, and weights to infer the functionality
(i.e., the real name) of operators. We implement DLModelExplorer
using dynamic program instrumentation framework Pin [4].

Model Parsing. We first write a script to automatically synthe-
sise the inputs as the specification and feed them into the on-device
model. Thus we can use dynamic instrumentation and analysis to
parse the model. We need to collect the names of operators (ob-
fuscated as random strings) in the DL model. Our tool traces the
execution process of the model inference, and then identifies the
executed API functions that contain the operator’s name. In the
implementation of TFLite, each operator’s source code will have
four basic functions: prepare (pre-allocate the intermediate data),
init (initialize the essential data), free (remove the data after the
inference), eval (the computing code of inference). The source
codes of each function will be written in a C++ workspace named
as the operator name. Therefore, we can use the operator’s name
in model representations to identify the corresponding workspace
and locate the eval function which has the code implementation of
model inference. The identified inference code will be used in the
dynamic instrumentation to deobfuscate the model information.

Hook Adding. After identifying the core inference function of
each operator, DLModelExplorer extracts the model weights of each

DynaMO: Protecting Mobile DL Models through Coupling Obfuscated DL Operators ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

wripyx

mjzdmh

fsebwa

API library(.so):
wripyx::eval{}
Mjzdmh::eval{}
Fsebwa::eval{}

void {Op_name}::eval{
 …
 load_weights(weights){
 Extract_weights()
 …
}
 inference(input, weights)
}

void {Op_name}::eval{
…
modified_function(input)
}

Conv2d

weights

softmax

Model parsing Hook adding Function modification Graph Rebuilding

Obfuscated model Core inference function Instrumented function Modified function Deobfuscated model

Figure 2: Overview of our proposed model deobfuscation method DLModelExplorer. The mjzdmh operator with a red dotted block
is an extra obfuscating operator.

operator. Although the weights can be obfuscated (e.g., store them
in different places and assemble them before inference), the in-
ference function needs the correct value to perform the right DL
model inference computing process. Therefore, DLModelExplorer
will search for the weight tensor construction function in the in-
ference function of the DL API library using dynamic analysis, to
find the place where the weights data is loaded into the memory
and can be extracted. As the TFLite and its related tools are open-
sourced, we can get the keyword of the weight tensor construction
function. DLModelExplorer will identify the tensor construction
step of the API library through keyword searching. If the related
construction function starts to be executed in the inference pro-
cess of operators, our DLModelExplorer will automatically hook a
data extraction function into the start of the construction to parse
the input data of the construction function and store the extracted
weights data in a separate file. Note that, DLModelExplorer will also
extract the parameter of the operator if it has, such as the padding
value and stride size for conv2d operator. The parameter is stored
as a struc data params in C++ source codes of TFLite. The process
of extracting parameters is similar to model weights, so we omit the
implementation details here. Then, the instrumented API library
will automatically extract and save the real weights used in the
model inference at runtime.

Function Modification. Another key aspect of on-device DL
models is their computational graph. This can be obfuscated by
extra obfuscating operator injection. Such extra obfuscating op-
erators are used to participate in the inference process but will
not affect the final results. For example, they can just produce the
same output as the input, or produce an output out of the range
of the input shape of the next operator which will not affect the
results of the next operator. In the function modification process,
DLModelExplorer will first monitor the inference process at runtime.
As shown in Listing 2, if a function {op_name}::eval() starts to
execute, our DLModelExplorer will dynamically insert a value-copy
function to the inference function, i.e., the eval() function, and
add a stop signal of the inference function. For instance, the TFLite
inference function will finally return a TFLite_OK (i.e., equal to 0)
to stop the execution and jump to the inference process of the next
operator. We use the value-copy function as the modified comput-
ing function which will produce the same output as the input. Next,
DLModelExplorer will compute the output difference between the
instrumented API library and the original library for each operator
under the same input. If the two outputs are not identical, it means
the modified operator is a valid operator that belongs to the original

model. Otherwise, the modified operator is an extra obfuscating
operator because the modified function will not affect the model
outputs.
void {op_name }:: Eval {

// Create essential data for the operator

TfLiteTensor* input = create_input(input_data);

TfLiteTensor* output;

// Copy the value of input to output

copy_value(input , output);

return TFLite_OK;

// The original implementation of the operator

...

}

Listing 2: Modified inference function of DL operator

Graph Rebuilding. After removing the extra obfuscating op-
erators and extracting the real model weights for each operator,
the only obfuscated information we left is the functionality of the
operator, i.e., the name of the operators. For the operators with
weights, the functionality of operators can be inferred by the data
shape (i.e., input, output, and weights). For example, the output
shape of conv2d operator can be found as follows:

𝐻out =

⌊
𝐻in + 2 × P[0] − D[0] × (W_Size[0] − 1) − 1

stride[0] + 1
⌋

𝑊out =

⌊
𝑊in + 2 × P[1] − D[1] × (W_Size[1] − 1) − 1

stride[1] + 1
⌋ (1)

Where the 𝐻𝑖𝑛 and 𝐻𝑜𝑢𝑡 are the dimensions in height of input
data and output data, respectively. The 𝑃 (i.e., padding), 𝐷 (i.e., dila-
tion), and stride are the parameters (i.e., the setting) of the conv2d
operator.𝑊 _𝑆𝑖𝑧𝑒 is the shape of the weights. In commonly used DL
models, there are only a limited number of operators with weights
like conv2d, depthwise_conv2d, fullyconnected. These opera-
tors have different output shapes for the same input and weights
shape. In our DLModelExplorer , it will use the output size to identify
the name of operators according to the predefined size transfor-
mation rules of potential operators (conv2d, depthwise_conv2d,
and fullyconnected), e.g., Equation (1). For the operators with-
out weights (e.g., softmax, relu, and add), DLModelExplorer will
extract the input and output data of each obfuscated operator at
runtime. Then, it uses the input to test different operators in a pre-
collected list. Note that to produce this operator list, we can collect
the operators from the TFLite operator list. Because the parameter
data of these operators have various construction processes, we
cannot extract the parameter data for all operators. So, to develop
a robust analysing method, we do not collect the parameter data to

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Mingyi Zhou, Xiang Gao, Xiao Chen, Chunyang Chen, John Grundy, and Li Li

Table 1: Deobfuscation performance of the proposed DLModelExplorer. WER, WEA, OCA, NIR, and SS are the five metrics used
to measure deobfuscation performance.

Metric Fruit Skin MobileNet MNASNet SqueezeNet EfficientNet MiDaS LeNet PoseNet SSD Average value
WER 100% 100% 100.0% 98.15% 96.30% 98.04% 95.10% 100.0% 100% 100% 98.76%
NIR 100% 100% 96.77% 98.41% 97.50% 100% 91.18% 100% 100% 100.0% 98.39%
OCA 100% 100% 100% 98.88% 100% 100% 100% 100% 100% 100% 99.89%
WEE 2.8 × 10−5 1.3 × 10−5 2.6 × 10−5 3.0 × 10−5 3.6 × 10−5 2.3 × 10−6 1.9 × 10−5 8.8 × 10−7 2.5 × 10−5 2.5 × 10−5 2.1 × 10−5

SS 1.0 1.0 0.97 0.98 0.97 1.0 0.91 1.0 1.0 1.0 0.98

predict the functionality of operators without weights. We use the
input-output relationship to guess the parameter of each candidate
operator and compute the output using the guessed parameter. If
the test operator produces the same output as the obfuscated opera-
tor of the on-device model, the name of the test operator is the name
of the obfuscated operator as they share the same functionality.
Thus, our proposed DLModelExplorer can parse the functionality of
each valid operator with a random obfuscating name.

3.3 Deobfuscation performance
3.3.1 Dataset. To evaluate DLModelExplorer’s performance on
deobfuscating on-device DL models with various structures for
multiple tasks, we use the 10 TFLite models, as used in [37]. These
include a fruit recognition model, a skin cancer diagnosis model,
MobileNet [12], MNASNet [26], SqueezeNet [15], EfficientNet [27],
MiDaS [23], LeNet [17], PoseNet [16], and SSD [20]. The fruit recog-
nition and skin cancer diagnosis models are collected from Android
apps. The other models were collected from the TensorFlow Hub 2.

3.3.2 Results. We first evaluate the deobfuscation performance of
DLModelExplorer . Existing model obfuscation methods can obfus-
cate multiple model information that includes weights, the function-
ality of each operator, and computational graphs. We use five de-
obfuscationmetrics to measure the performance of DLModel-
Explorer, including Weights Extraction Rate (WER), Weights
Extraction Error (WEE), Operator Classification Accuracy
(OCA), Name Identification Rate (NIR), and Structure Simi-
larity (SS). Note that the two metrics WEE and SS represent the
global performance in weight and structure extraction.

The formula of WER is WER = 𝑛/𝑚, where 𝑛 is the number
of extracted weights with an element-wise maximal error of the
output difference less than 1 × 10−4 compared with the original
weights. The original weights are extracted by official APIs pro-
vided by TFLite. We choose 1 × 10−4 as the threshold because we
consider the error in computing and extraction (The error in ex-
tracting the original weights of the model using TFLite APIs is
within 5 decimal places.). 𝑚 is the total number of weights that
need to be extracted. The WEE is used to measure the average
difference of the extracted weights and original weights, which can
be formularized byWEE = 1

𝑁

∑𝑁
1 max(|𝑊 ′

𝑛 −𝑊𝑛 |), where𝑊 ′
𝑛 and

𝑊𝑛 are the extracted weights and the original weights of the 𝑛−th
operator, respectively. Note that we only compute the WEE for the
successfully extracted weights (the maximal error of the output
difference less than 1 × 10−4 compared with the original weights).

2https://tfhub.dev/

TheOCA is a binary classification metric. We only classify whether
an operator is a valid operator or an obfuscating extra operator.
For NIR, it can be computed by NIR = 𝑖/ 𝑗 , where 𝑖 is the number
of successfully identified operators, and 𝑗 is the total number of
operators that have been classified as valid operators. We collect an
operator list (See our code repository), and identify which operator
in the list the renamed operator is equal to. For SS, if one operator
is misclassified in NIR or OCA, it can be considered an error point.
Then we use the number of error points divided by the number of
operators to compute the SS.

The deobfuscation results are shown in Table 1. The DLModelEx-
plorer achieves 98.76% of Weights Extraction Rate (WER), 99.89% of
Operator Classification Accuracy (OCA), 98.39% of Name Identifi-
cation Rate (NIR), and 0.98 pf Structure Similarity (SS). That means
our instrumentation analysis method can effectively deobfuscate
the on-device model. In addition, our method achieves low Weights
Extraction Error (WEE).

3.3.3 Analysis. Our results show that existing mobile DL model
obfuscation methods are not robust. The reason is we need to de-
ploy the model representation on mobile devices to guarantee the
DL API library performs the right inference computations. Existing
model obfuscation strategies need to restore the correct informa-
tion and execute the correct inference process for each operator
at runtime, thus enabling the attacking exploitation based on the
dynamic instrumentation. In addition, DLModelExplorer only needs
a maximum of 2×𝑛 (some operators don’t have any weights) times
of inference to collect the information of an n-layer model. In our
experiments, attackers only need 5-20 minutes to finish all steps
for one model. Therefore, existing obfuscation methods are very
vulnerable to dynamic instrumentation-based attacks. This shows
that we need to develop a new approach to defence against attacks
based on dynamic instrumentation.

RQ1: Our DLModelExplorer can effectively extract the sen-
sitive information of obfuscated models generated by exist-
ing obfuscation strategies. Existing obfuscation methods
are not robust for the instrumentation-based attack.

4 RQ2: DYNAMIC OBFUSCATION STRATEGY
4.1 Approach Requirements
Despite using renaming, parameter encapsulation, and extra layer
injection static obfuscation methods, RQ1 results show that attack-
ers can use dynamic instrumentation to extract correct DL model

https://tfhub.dev/

DynaMO: Protecting Mobile DL Models through Coupling Obfuscated DL Operators ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Conv2d

Conv2d

(2) Parsed model

mjzdmh fsebwa

(3) Obfuscated model

Relu
Relu

mjzdmh fsebwa

(4) Operator-coupled model

Relu

gdsogu

(1) TFLite model Obfuscated
model

API library

Model Parsing Obfuscation Operator Coupling Compilation

Conv2d

Conv2d

Conv2d

Conv2d

Figure 3: Overview of our proposed DynaMO. The dotted block denotes the extra obfuscating operator. The green block
denotes the selected operator in weight transformation obfuscation. The red block (both dotted and solid) denotes the eligible
coupled operators that can be used to recover the correct results. Note that we do not obfuscate the names of valid operators to
demonstrate the process clearly.

information at runtime. Although there are many existing methods,
such as various cryptographic techniques, that might be used to
protect a DL model, it is hard to use them to protect on-device
models, as such a model is very sensitive to computational cost. In
addition, we should avoid requiring additional hardware support,
as existing mobile platforms like Android cannot provide specific
needed hardware/software environments to millions of Apps.

To disable instrumentation-based analysis, as used in DLModel-
Explorer , we need to not only provide the obfuscating information
to the attackers but also feed obfuscating information to the infer-
ence code of operators. However, it is hard to feed the obfuscating
information to the inference process but finally restore the results
to the correct one, as well as add enough randomness to the pro-
cess. For example, a straightforward strategy is transforming the
weights or outputs of one operator and performing the inverse
process in the next operator (similar protection has been used in
existing DL platforms like [3]). Such an obfuscation can be eas-
ily identified because it requires the next operator to perform a
reverse transformation after transforming the weights in the previ-
ous operator (it has a different inference pattern than the normal
DL model). Attackers can also use dynamic instrumentation to get
the details of the result recovery process in the next operator and
then deobfuscate the weights of the operator. If the weights of a
valid operator 𝑖 (the inference formula is 𝑋𝑖+1 = 𝑓 (𝑊𝑇

𝑖
𝑋𝑖)) are

obfuscated by 𝑎𝑊𝑖 , the correct results of the operator need to be
recovered by performing 1

𝑎𝑋𝑖+1 in the start of the next operator.
Attackers can identify the result-recovering process as the inference
code needs to be modified to recover the correct results (adding
another step 1

𝑎𝑋𝑖+1). Then, they can use dynamic instrumentation
to obtain the recovering parameter 1

𝑎 , and deobfuscate the weights
of the operator 1

𝑎 (𝑎𝑊𝑖) =𝑊𝑖 .

4.2 The Dynamic Model Obfuscation Process
Our solution to defend against dynamic instrumentation adopts
a concept akin to Homomorphic Encryption – that is, we use ob-
fuscated information (e.g., weights, architecture) to perform DL
model inference to get obfuscated results. These results can then be
recovered by a deobfuscation step after the computing process of

several operators. To do this, we perform simple linear transforma-
tions for model weights in randomly picked operators. Then, we
randomly choose eligible operators (including the extra obfuscating
operators), which may not be the directly connected next opera-
tor. The extra obfuscating operators can be considered a special
linear operator whose weight data is an identity matrix. It injects
the corresponding inverse transformation in the weights of cho-
sen eligible operators to recover the model results. This approach
prevents attackers from using dynamic instrumentation in actual
inference code functions of each operator to obtain the sensitive
model information because the relation between the representation
obfuscation and information recovery at runtime does not have a
fixed pattern. It then becomes very hard to reverse engineer the
steps of weight transformation and corresponding result recovery,
even if attackers can parse one of these. In addition, extra obfus-
cating operators can be added to contribute to the model output,
i.e., recover the correct intermediate results using a linear transfor-
mation like other normal operators. Attackers cannot use dynamic
code modification to identify such extra obfuscating operators.

The key steps of our proposed method, Dynamic Model Ob-
fuscation (DynaMO), are outlined in Figure 3. We integrate our
obfuscation strategy into the existing model obfuscation process.
Our tool DynaMO first parses the on-device TFLite model. It then
obfuscates it using existing model obfuscation methods, producing
obfuscated operators. Compared with the existing obfuscation pro-
cess, our method has one more step for coupling these obfuscated
DL model operators. It uses a fully dynamic obfuscation method
to compute intermediate results using obfuscated weights from
a selected operator, and then recovers the correct results at the
coupled operator. To achieve this, DynaMO obfuscates the weights
of the selected operator like existing methods (i.e., using simple
linear transformation), but recovers the correct results by another
weight transformation. That means DynaMO does not need to add
an additional step to recover the results which is easy to identify.
Attackers cannot identify it unless they know the original weights.

Unlike existing strategies, the choice of coupled operators has
multiple possibilities. For example, it can obfuscate the weights of
the green conv2d operator in Figure 3, and choose the mjzdmh and
fsebwa or following conv2d operators as the coupled operators.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Mingyi Zhou, Xiang Gao, Xiao Chen, Chunyang Chen, John Grundy, and Li Li

This can further increase the difficulty for attackers to identify the
operator pair (i.e., selected operator and coupled operator), even if
attackers manage to identify one of them. In addition, previous extra
obfuscating operator injection methods can only inject obfuscating
operators that will not change the final output to the computation
graph. In ourDynaMO, the extra obfuscating operators (e.g., mjzdmh
and fsebwa) perform a simple linear computation, and can affect
the final output when they are chosen as the selected operator or
the coupled operator without significantly increasing the computa-
tional overhead. Thus, it is hard for the dynamic instrumentation
and analysis proposed in DLModelExplorer to identify the extra
obfuscating operator as it performs a similar linear computation
process to other operators.

In summary, we propose a fully dynamic obfuscation strategy.
It can obfuscate the intermediate results and model information
without performance loss. It also increases the randomness in the
obfuscation process, including the choice of the selected operator
and the coupled operator, with negligible overhead compared with
existing obfuscation methods. Thus, DynaMO can significantly
increase the difficulty of the model deobfuscation. Note that we do
not need to obfuscate all weights of on-device models if attackers
cannot identify which weight data is obfuscated.

4.3 Obfuscation
The first step is obfuscating the on-device DL model using the
existing obfuscation methods, including Renaming, Weights encap-
sulation, Neural architecture obfuscation, Extra layer injection, and
Shortcut injection. The Neural architecture obfuscation and Shortcut
injection are compatible with our strategy, but they will not affect
the outcome of our method whether they exist in the obfuscation
process or not. Therefore, we omit them in our analysis and visual-
ization (i.e., Figure 3). After parsing and obfuscating the on-device
model using an existing tool like ModelObfuscator [37], we obtain
the obfuscated DL model, shown in Figure 3.

4.4 Obfuscation Coupling
Notations: DynaMO will then perform obfuscation coupling to
introduce the obfuscation to the intermediate results of the comput-
ing process. As we mentioned in the Overview section, consider a
linear operator, we can obfuscate the weight of the selected operator
using a linear transformation, which can be formulated as:

𝑋𝑛+1 = 𝑎𝑊𝑇
𝑛 𝑋𝑛 + 𝑎𝑏𝑛 (2)

where 𝑋𝑛 is the input of the n-th operator of the DL model, 𝑥𝑛+1
is the output of the 𝑛-th operator and also the input of (𝑛 + 1)-
th operator.𝑊𝑛, 𝑏0 are the weights of the operator. In this linear
transformation, we use the product of a scale value 𝑎 and original
weights𝑊𝑛, 𝑏0 as the new weights. We can use such linear transfor-
mation to obfuscate the weights of any linear operators, including
FullyConnected, Conv2D. The formula for Conv2D is different from
the Equation 2, but it has similar properties. So, we use it to present
all linear operators. Note that, the extra injecting operator in
existing model obfuscations also can be represented as a lin-
ear operator, where the𝑊𝑛 is equal to an identity matrix 𝐼𝑛 ,
and the 𝑏𝑛 is a zero vector. Thus, the weights of the selected oper-
ator can be obfuscated. Next, we need to find the coupled operator

to perform another linear transformation to the weights to recover
the correct results. To show the process clearly, we first introduce
the CoupledWeight Transformation rule for linear operators, which
is shown as follows:

Lemma4.1. (CoupledWeight Transformation on linearmodel):
A sub-network 𝑓 consists of multiple linear layers {𝐿1, 𝐿2, · · · , 𝐿𝑛}
and the 𝑖-th layer is 𝐿𝑖 : 𝑋𝑖 =𝑊 ⊤

𝑖−1𝑋𝑖−1 + 𝑏𝑖−1 where 𝑖 ∈ [1, 𝑛]. The
output of the sub-network 𝑓 w.r.t. to the input 𝑋0 would be 𝑓 (𝑋0).
If𝑊1 is transformed to 𝑎𝑊1,𝑊𝑛 is transformed to 1

𝑎𝑊𝑛 , and 𝑏𝑖 is
transformed to 𝑎𝑏𝑖 for 𝑖 ∈ [1, 𝑛− 1], then the transformed network 𝑓 𝑠

w.r.t. to the input 𝑋0 would be 𝑓 𝑠 (𝑋0) and we have 𝑓 𝑠 (𝑋0) = 𝑓 (𝑋0).
The proof can be found in our code repository.

Explanation of Lemma 4.1: Through the Lemma 4.1, if we ob-
fuscate the weights by a linear transformation (i.e., 𝑎𝑊0, 𝑎𝑏0) in
the first conv2d (the selected operator) with a green box (shown in
Figure 3 (4)), We can recover the corrected results by performing a
linear transformation (i.e., 1𝑎𝑊𝑛 , 1𝑎𝑏𝑛 , where 𝑛 denotes the operator
ID of the coupled operator) in the coupled operator. The coupled
operator could be {mjzdmh, fsebwa} as the output of the selected
operator (the green conv2d) are shared to both mjzdmh and fsebwa,
or the coupled operator could be the second conv2d with a red box.
The coupled operator can not be gdsogu in Figure 3, as the previ-
ous operator relu is not a linear operator. So the coupled Weight
Transformation rule will not exist for it.

We can follow the CoupledWeight Transformation rule to search
the operator pair on linear models. Although the DL model usually
has non-linear operators like relu, we can still find many eligible
coupled operator pairs for the non-linear model unless all linear
operators are followed by a non-linear operator. However, the most
commonly used on-device DL architecture Convolutional Neural
Networks (CNNs) usually have many nonlinear operators, i.e., some
conv2d operators followed by a relu operator in the Convolutional
Neural Network, and the extra obfuscating operator cannot be
injected between the conv2d and the followed relu operator as
they are fused as one operator in TFLite to increase the inference
efficiency. Thus, searching for the potential coupled operator will
usually fail if we choose the conv2d as the selected operator to
obfuscate. Therefore, to increase the utility of our method and
extend the CoupledWeight Transformation rule for the propagation
path has the nonlinear operator, we define a Coupled Weights
Obfuscation rule for non-linear models, which is shown as follows:

Theorem 4.2. (Coupled Weights Obfuscation): We consider a
general non-linear ReLU𝛽 layer (e.g., relu6 operator):

ReLU𝛽 (𝑥) =


𝛽, if 𝑥 ≥ 𝛽 ;
𝑥, else if 0 < 𝑥 < 𝛽 ;
0, otherwise.

If𝑊𝑖 and 𝑏𝑖 in the sub-network 𝑓 are scaled to 𝑎𝑊𝑖 and 𝑎𝑏𝑖 for 𝑖 ∈
[1, 𝑛] with 0 < 𝑎 < 1, respectively, to get the transformed sub-network
𝑓 𝑠 . Then, ReLU𝛽 (1𝑎 𝐼𝑛+1 × ReLU𝛽

(
𝑓 𝑠 (𝑋0)

)
) = 𝐼𝑛+1 × ReLU𝛽

(
𝑓 (𝑋0)

)
.

The proof can be found in our code repository.

Explanation of Theorem 4.2: When we choose the first conv2d
operator with a green box (see Figure 3), the transformation prop-
agation can be extended to the next extra obfuscating operator

https://github.com/zhoumingyi/DynaMO/blob/main/ASE2024_Sup.pdf
https://github.com/zhoumingyi/DynaMO/blob/main/ASE2024_Sup.pdf

DynaMO: Protecting Mobile DL Models through Coupling Obfuscated DL Operators ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Algorithm 1 : Obfuscation Coupling

Input: computational graph G, the number of obfuscation pairs 𝑛.
Output: obfuscation-coupled graph G
1 : Initialize a coupled operators set S, and a transformation parameter

set A
2 : For 𝑚 in range(1, 𝑛) do :
3 : random choose an eligible selected operator𝑂 in G
4 : find the eligible coupled operator set O
5 : if O is not empty:
6 : random choose the coupled operator𝑂 from O
7 : S.append(𝑂,𝑂)
8 : 𝑎 = random(0, 1)
9 : A.append(𝑎)
10 : For (𝑂,𝑂) in S :
11 : perform transformation for the propagation path[𝑂,𝑂]
12 : Return G

connected to the first relu in the transformation path, i.e., gdsogu
operator that performs ReLU𝛽 (1𝑎 𝐼𝑛+1 × ReLU𝛽

(
𝑓 𝑠 (𝑋0)

)
), where

the 𝐼𝑛+1 is the weights of the operator and is an identity matrix.
Specifically, DynaMO will perform a linear transformation to the
weights (𝑎𝑊0, 𝑎𝑏0) as it is the selected operator. Then, except for
choosing {mjzdmh, fsebwa} or conv2d as the coupled operator (as
shown in the explanation of Lemma 4.1), we can choose the gdsogu
operator as the coupled operator by transforming the weights (i.e.,
1
𝑎𝑊4 and 1

𝑎𝑏4, where𝑊4 is an identity matrix and 𝑏4 is a zero vec-
tor). Note that here we need to add a fused relu computation at the
end of the inference process of gdsogu (i.e., the outer ReLU func-
tion of ReLU𝛽 (1𝑎 𝐼𝑛+1 × ReLU𝛽

(
𝑓 𝑠 (𝑋0)

)
)). By adding many extra

obfuscating operators to the computational graph, DynaMO can
find more eligible transformation pairs for CNNs, thus improving
the obfuscation performance.

Algorithm. Our DynaMO will first use existing obfuscation
methods [37] to obfuscate the model representation. Then, it will
perform the Obfuscation Coupling algorithm, which is shown in
Algorithm 1. Note that our dynamic obfuscation strategy uses linear
transformation, it supports obfuscating the same operators several
times. So, DynaMO will randomly sample 𝑛 obfuscation pairs (we
set the 𝑛 to the total number of operators) from G based on the
Lemma 4.1 and Theorem 4.2. Note that the selected operator and
the coupled operator may include multiple operators. For example,
as shown in Figure 3, if the green conv2d is chosen as the selected
operator, the coupled operator can be mjzdmh and fsebwa as they
are both the next operator of the conv2d. Finally, DynaMO will
follow the rule defined in Lemma 4.1 and Theorem 4.2 to obfuscate
the weights through a linear transformation. Such transformation
is hard to detect unless attackers know the original weights.

4.5 Compilation
After obtaining the obfuscated model and the modified source code
of the API library using an existing DL obfuscation tool [37], Dy-
naMO then assembles the new obfuscated model generated by its
dynamic obfuscation strategy in Python. Then, it recompiles the

modified TFLite library to support the newly generated obfuscated
model. The newly generated obfuscated model and library can be
packaged into mobile apps or embedded device software to replace
the original unobfuscated model or obfuscated model generated by
existing obfuscation strategies.

4.6 DynaMO Effectiveness
Note that in our evaluations, we set the number of obfuscation pairs
𝑛 in Algorithm 1 to the total number of operators. The settings are
the same as the evaluation in section 3. Note that we set the
number of extra obfuscating operators to 30 in evaluating
the effectiveness of DynaMO.

4.6.1 Output Difference. We need to first evaluate the perfor-
mance loss of our proposed obfuscation strategy. Table 2 sum-
marises the evaluation of our methods on performance loss com-
pared with existing model obfuscation [37]. The maximal element-
wise error can be formulated as:

𝜃 = (𝑁max
𝑖=1

|C (𝑥𝑖) − G (𝑥𝑖) |) ÷
𝑁max
𝑖=1

|G (𝑥𝑖) | (3)

where G is the model results before obfuscation. C refers to the
output of obfuscated models. 𝑁 denote the total number of output
elements (the output is usually a matrix or vector). We use 100
inputs to compute the maximal element-wise error and divide the
error by the maximal value of the original output to get the scaled
maximal element-wise error. OurDynaMOmethod only has negligi-
ble errors, because DynaMO theoretically uses the same computing
process as the original model inference. But the weights transfor-
mation process in our DynaMO will have an inevitable computing
error that is very small.

4.6.2 Resilience to Attack. The effectiveness evaluation of our
DynaMO is shown in Table 1. Compared with the existing model
obfuscation method (see Table 1), the DLModelExplorer significantly
reduce the performance of attacks based on dynamic instrumen-
tation. Note that we only introduce a maximum of 30 obfuscating
operators to the obfuscated model. Because DLModelExplorer will
classify all operators (including valid operators and obfuscating
operators) to valid operators, DLModelExplorer achieves 60.04% of
Operator Classification Accuracy (OCA). It only obtains 0.5% of
true negative rate that shows the performance of correctly iden-
tifying the obfuscating operator. Our method can obfuscate the
intermediate results, the DLModelExplorer only achieves 57.60% of
the operator’s name identification rate (NIR). Our DynaMO also
achieves high performance on weights obfuscation, attackers can
only correctly extract 52.52% of model weights. In global metrics
(i.e., WEE and SS), the extracted weights have high errors (i.e., 0.78)
compared with the results of existing obfuscation methods (i.e.,
2.1 × 10−5). Our method also can significantly decrease the struc-
ture similarity (SS) from 0.98 to 0.58. The results show the dynamic
instrumentation analysis method cannot effectively deobfuscate the
models generated by our proposed dynamic obfuscation strategy.
Note that The model representations are randomly obfuscated by
our method, it is hard for attackers to identify which operators have
been obfuscated. Therefore, we do not need to apply our DynaMO
to obfuscate all model weights, operators, and intermediate results
to reduce the performance loss.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Mingyi Zhou, Xiang Gao, Xiao Chen, Chunyang Chen, John Grundy, and Li Li

Table 2: The scaled maximal element-wise error of our proposed DynaMO compared with the existing model obfuscation
method ModelObfuscator [37].

Model name Fruit Skin cancer MobileNet MNASNet SqueezeNet EfficientNet MiDaS Lenet PoseNet SSD Average
ModelObfuscator 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DynaMO 1.4×10−7 2.0×10−7 4.9×10−9 5.9×10−8 3.8×10−9 1.2×10−8 3.8×10−7 4.8×10−7 4.3×10−8 6.5×10−8 1.4×10−7

Table 3: Performance of DynaMO in defending against the instrumentation attack DLModelExplorer. ‘TN’: True negative (i.e.,
correct identification for obfuscating operators) rate of operator classification. ‘Difference’: the average value difference between
the attacking performance based on DynaMO (this table) and existing obfuscation methods (Table 1). ‘WER, NIR, OCA, SS’: the
lower is better. ‘WEE’: the higher is better.

Metric Fruit Skin MobileNet MNASNet SqueezeNet EfficientNet MiDaS LeNet PoseNet SSD Average value Difference
WER 55.17% 51.72% 35.71% 50.00% 62.96% 68.63% 56.94% 25.00% 59.38% 59.72% 52.52% 46.24 ↓
NIR 52.54% 51.67% 49.18% 70.45% 74.70% 73.81% 71.26% 33.33% 26.19% 72.82% 57.60% 40.80% ↓
OCA 52.54% 51.67% 50.82% 70.79% 73.26% 73.81% 79.31% 29.63% 57.89% 80.65% 60.04% 37.85% ↓
TN (OCA) 0% 0% 0% 0% 0% 0% 0% 5.00% 0% 0% 0.5% N/A
WEE 0.61 1.46 2.70 1.25 0.32 0.33 0.14 0.04 0.75 0.24 0.78 0.78 ↑
SS 0.53 0.52 0.49 0.70 0.75 0.74 0.71 0.33 0.26 0.73 0.58 0.40 ↓

Table 4: The ability to resist the reverse engineering for
on-device models. ‘

√
’: this model parsing method cannot

extract information for all models. ‘Model conversion’: TF-
ONNX [1], TFLite2ONNX [29], and TFLite2TF [14]. ‘Parsing
in buffer’: [18]. ‘Feature analyzing’: [13].

Model conversion Parsing in buffer Feature analyzing
ModelObfuscator

√ √ √

DynaMO
√ √ √

In addition, we follow the setting in [37] to check whether our
proposed obfuscation strategy can still be robust for the reverse
engineering of an on-device model or not. The results are shown
in 4. It shows our proposed strategy will not degrade the model
resistance against normal reverse engineering methods.

RQ2: Our DynaMO is effective in defending against exist-
ing model parsing methods and dynamic instrumentation
attack method DLModelExplorer , with only negligible per-
formance loss.

5 RQ3: EFFICIENCY OF DYNAMO
As DynaMO introduces additional computations via its extra obfus-
cating operators, it is important to evaluate the influence of such
additional computation on inference efficiency. In order to evaluate
the efficiency impact of our obfuscation strategies on ML models,
we conducted experiments to measure new obfuscated ML model
runtime overhead.

Experimental Environment: The efficiency of DynaMO is eval-
uated on a workstation with Intel(R) Xeon(R) W-2175 2.50GHz CPU,
32GB RAM, with Ubuntu 20.04.1 operating system and a Xiaomi 11
Pro smartphone with Android 13 OS.

Time Overhead: We measured the time overhead of DynaMO
and existing DL model obfuscation strategies [37], based on 5,000
randomly generated instances. The results of these experiments
are presented in Tables 5, which report the time overhead of the
obfuscated models. As shown in Table 5, even though additional
computations are introduced into the extra obfuscating operators,
DynaMO obfuscated models incur a negligible time overhead
compared with existing model obfuscation strategy. This is
because the obfuscating operators just perform simple linear trans-
formations, which have low complexity compared with the whole
model inference process.

RAM Overhead: We measured the RAM overhead of both ob-
fuscation strategies. The memory overhead for DynaMO obfuscated
models is shown in Table 6. To eliminate the impact of different
memory optimization methods, like the study [37], we use peak
RAM usage where the model preserves all intermediate tensors.
Our method only introduces negligible overheads compared
with the existing model obfuscation strategies. Because our
obfuscation strategy only transforms the value of the weights.

RQ3: The time and RAM overhead of DynaMO are both
negligible, while RQ2 shows that our proposed DynaMO
strategy significantly improves the security level of the
ob-device models.

6 LIMITATIONS
Our proposed DLModelExplorer and DynaMO are designed for on-
device TFLite models. Although our strategy can be adapted to
other DL platforms, we do not know if there are unsupported DL
model constructs our approach may not be able to support.

We have not evaluated our DynaMO with real-world mobile ML
developers. We have not evaluated our DynaMO with side-channel
information (e.g., RAM, CPU usage) to reconstruct the model [11, 19,

DynaMO: Protecting Mobile DL Models through Coupling Obfuscated DL Operators ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 5: Time overhead (seconds per 1000 inputs) of DynaMO compared with existing obfuscation method [37] on x86-64 and
ARM64 platforms. We set the number of extra layers to 20 for both obfuscation strategies.

x86-64

Fruit Skin MobileNet MNASNet SqueezeNet EffcientNet MiDaS LeNet PoseNet SSD Average value
original 28.6 86.7 53.3 69.4 37.5 99.7 309.1 2.1 114.3 208.6 100.9
ModelObfuscator 28.4 87.4 55.6 71.2 39.7 101.1 321.7 2.9 117.8 211.1 103.7
DynaMO 29.1 87.7 54.9 71.5 40.3 102.4 329.2 2.9 117.9 212.6 104.9

ARM64

Fruit Skin MobileNet MNASNet SqueezeNet EffcientNet MiDaS LeNet PoseNet SSD Average value
original 14.2 45.5 28.1 36.0 53.2 41.1 380.9 4.6 43.8 92.3 73.9
ModelObfuscator 14.3 45.9 28.6 36.2 53.7 41.1 381.4 4.9 44.1 92.4 74.3
DynaMO 14.2 46.2 28.8 36.5 53.8 41.4 385.3 4.9 44.7 92.6 74.8

Table 6: Overhead of DynaMO on random access memory (RAM) cost (Mb per model) compared with existing obfuscation
method [37]. To eliminate the influence of other processes on the test machine, we show the increment of RAM usage.

Fruit Skin MobileNet MNASNet SqueezeNet EffcientNet MiDaS LeNet PoseNet SSD Average value
Original 13.5 34.6 23.9 37.7 34.4 43.4 253.8 6.2 38.8 97.8 58.4
ModelObfuscator 22.2 54.9 38.0 56.6 47.9 59.6 278.9 6.8 55.4 107.6 72.8
DynaMO 26.9 58.5 39.2 56.3 48.6 61.1 281.4 9.3 58.5 108.3 74.8

30]. Our proposed DynaMO may not be effective for them because
the obfuscated model has a similar resource consumption pattern
to the original models. However, our method is designed for and
very effective for resisting the attacks based-on program analysis.

Our dynamic obfuscation method DynaMO will cause a very
slight performance loss for on-device models. In addition, our pro-
posed DynaMO will introduce very small overheads to the model
inference similar to the existing model obfuscation strategies.

Threats to Validity. For internal threats to validity, the effi-
ciency evaluation results (RQ3) may be affected by other services
running in the experimental environments (i.e., Ubuntu server, Xi-
aomi 11 Pro). For external threats to validity, as the DL techniques
and AI compilers may change a lot, our tool needs continuous
updates in the future.

Op_1 Op_1 Op_1

API Library
DLModelExplorer

Monitor

Instrumentation

DynaMOObfuscate

Deobfuscate

Figure 4: Meta-model our method.

Meta-Model. Although we focus on the TFLite because it’s the
most commonly used DL platform on mobile devices, especially
for Android, our methods are also general for other DL compilers.
We propose two methods: DLModelExplorer and DynaMO. DLMod-
elExplorer will monitor the APIs (DL compilers are usually open-
sourced) that allocate the model weights to the memory and obtain

the intermediate results by instrumentation to predict the oper-
ator’s type. DynaMO only uses linear weight transformations to
obfuscate and restore the model’s outputs. The meta-model of our
study is shown in Figure 4.

7 CONCLUSION
We analyzed the risk of deep learningmodels deployed onmobile de-
vices and the vulnerabilities of the existing static and half-dynamic
DL model obfuscation strategies. We showed that attackers can still
extract information from these obfuscated models using dynamic
instrumentation-based techniques. To address this vulnerability,
we propose a novel dynamic model obfuscation strategy and tool,
DynaMO to better secure mobile device deployed DL models. Dy-
naMO can couple the obfuscated DL model operators to increase
the randomness of the obfuscation process without significant over-
head. In addition, we provide a theoretical guarantee to achieve
such dynamic obfuscation without model performance loss. We
developed a prototype tool DynaMO to automatically obfuscate
TFLite DL models using our proposed obfuscation strategy. Exper-
iments show that our method is effective in resisting the model
parsing tools and the proposed dynamic instrumentation attack
without performance sacrifice. In the future, we will optimize the
obfuscation process and our prototype tool to further increase the
efficiency of our method and tool.

ACKNOWLEDGEMENTS
This work is partially supported by the Open Foundation of Yunnan
Key Laboratory of Software Engineering under Grant No.2023SE102.
Zhou is supported by a Faculty of IT PhD scholarship. Grundy is
supported by ARC Laureate Fellowship FL190100035.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Mingyi Zhou, Xiang Gao, Xiao Chen, Chunyang Chen, John Grundy, and Li Li

REFERENCES
[1] 2022. tf2onnx - Convert TensorFlow, Keras, Tensorflow.js and Tflite models to ONN.

https://github.com/onnx/tensorflow-onnx
[2] 2024. Apktool: A tool for reverse engineering Android apk files. https://ibotpeaches.

github.io/Apktool/
[3] 2024. Mindspore. https://www.mindspore.cn/lite/docs/en/r1.7/use/obfuscator_

tool.html
[4] 2024. Pin: A Dynamic Binary Instrumentation Tool. https://www.intel.

com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-
instrumentation-tool.html

[5] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org/ Software available from tensorflow.org.

[6] Simin Chen, Hamed Khanpour, Cong Liu, and Wei Yang. 2022. Learning to
reverse dnns from ai programs automatically. In AAAI Conference on Artificial
Intelligence.

[7] François Chollet et al. 2018. Keras: The python deep learning library. Astrophysics
source code library (2018), ascl–1806.

[8] Christian Collberg, Clark Thomborson, and Douglas Low. 1997. A taxonomy of
obfuscating transformations.

[9] Christian Collberg, Clark Thomborson, and Douglas Low. 1998. Manufacturing
cheap, resilient, and stealthy opaque constructs. In Proceedings of the 25th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages. 184–196.
https://doi.org/10.1145/268946.268962

[10] Malinda Dilhara, Ameya Ketkar, and Danny Dig. 2021. Understanding Software-
2.0: A Study of Machine Learning library usage and evolution. ACM Transactions
on Software Engineering and Methodology (TOSEM) 30, 4 (2021), 1–42. https:
//doi.org/10.1145/3453478

[11] Vasisht Duddu, Debasis Samanta, D Vijay Rao, and Valentina E Balas. 2018.
Stealing neural networks via timing side channels. arXiv preprint arXiv:1812.11720
(2018).

[12] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[13] Yujin Huang and Chunyang Chen. 2022. Smart App Attack: Hacking Deep
Learning Models in Android Apps. IEEE Transactions on Information Forensics
and Security 17 (2022), 1827–1840.

[14] Katsuya Hyodo. 2022. tflite2tensorflow. https://github.com/PINTO0309/
tflite2tensorflow

[15] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and< 0.5 MBmodel size. arXiv preprint arXiv:1602.07360 (2016).

[16] Alex Kendall, Matthew Grimes, and Roberto Cipolla. 2015. Posenet: A con-
volutional network for real-time 6-dof camera relocalization. In Proceedings
of the IEEE international conference on computer vision. 2938–2946. https:
//doi.org/10.1109/iccv.2015.336

[17] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324. https://doi.org/10.1109/5.726791

[18] Yuanchun Li, Jiayi Hua, Haoyu Wang, Chunyang Chen, and Yunxin Liu. 2021.
Deeppayload: Black-box backdoor attack on deep learning models through neural
payload injection. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). IEEE, 263–274. https://doi.org/10.1109/icse43902.2021.00035

[19] Sihang Liu, YizhouWei, Jianfeng Chi, Faysal Hossain Shezan, and Yuan Tian. 2019.
Side channel attacks in computation offloading systems with gpu virtualization.
In 2019 IEEE Security and Privacy Workshops (SPW). IEEE, 156–161.

[20] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. 2016. Ssd: Single shot multibox detector.
In European conference on computer vision. Springer, 21–37.

[21] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay
Celik, and Ananthram Swami. 2017. Practical black-box attacks against machine
learning. In Proceedings of the 2017 ACM on Asia conference on computer and
communications security. 506–519.

[22] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[23] René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun.
2020. Towards robust monocular depth estimation: Mixing datasets for zero-
shot cross-dataset transfer. IEEE transactions on pattern analysis and machine
intelligence 44, 3 (2020), 1623–1637. https://doi.org/10.1109/tpami.2020.3019967

[24] Pengcheng Ren, Chaoshun Zuo, Xiaofeng Liu, Wenrui Diao, Qingchuan Zhao,
and Shanqing Guo. 2024. DEMISTIFY: Identifying On-device Machine Learning
Models Stealing and Reuse Vulnerabilities in Mobile Apps. In Proceedings of the
46th IEEE/ACM International Conference on Software Engineering. 1–13.

[25] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merz-
dovnik, and Edgar Weippl. 2016. Protecting software through obfuscation: Can
it keep pace with progress in code analysis? ACM Computing Surveys (CSUR) 49,
1 (2016), 1–37. https://doi.org/10.1145/2886012

[26] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew
Howard, and Quoc V Le. 2019. Mnasnet: Platform-aware neural architecture
search for mobile. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2820–2828. https://doi.org/10.1109/cvpr.2019.00293

[27] Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International conference on machine learning.
PMLR, 6105–6114.

[28] Chenxi Wang. 2001. A security architecture for survivability mechanisms. Univer-
sity of Virginia.

[29] Zhenhua Wang. 2021. tflite2onnx - Convert TensorFlow Lite models to ONNX.
https://github.com/jackwish/tflite2onnx

[30] Junyi Wei, Yicheng Zhang, Zhe Zhou, Zhou Li, and Mohammad Abdullah
Al Faruque. 2020. Leaky dnn: Stealing deep-learning model secret with gpu
context-switching side-channel. In 2020 50th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 125–137. https:
//doi.org/10.1109/dsn48063.2020.00031

[31] GregoryWroblewski. 2002. General method of program code obfuscation. (2002).
[32] JingWu, Munawar Hayat, Mingyi Zhou, andMehrtash Harandi. 2024. Concealing

Sensitive Samples against Gradient Leakage in Federated Learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 38. 21717–21725.

[33] Jing Wu, Mingyi Zhou, Shuaicheng Liu, Yipeng Liu, and Ce Zhu. 2020. Decision-
based universal adversarial attack. arXiv preprint arXiv:2009.07024 (2020).

[34] Chaoning Zhang, Philipp Benz, Adil Karjauv, Jae Won Cho, Kang Zhang, and
In So Kweon. 2022. Investigating Top-k White-Box and Transferable Black-box
Attack. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 15085–15094.

[35] Mingyi Zhou, Xiang Gao, Xiao Chen, Chunyang Chen, John Grundy, and Li Li.
2024. DynaMO: Protecting Mobile DL Models through Coupling Obfuscated DL
Operators (0.1). https://doi.org/10.5281/zenodo.13762398

[36] Mingyi Zhou, Xiang Gao, Pei Liu, John Grundy, Chunyang Chen, Xiao Chen, and
Li Li. 2024. Model-less Is the Best Model: Generating Pure Code Implementa-
tions to Replace On-Device DL Models. In Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Analysis (Vienna, Austria) (IS-
STA 2024). Association for Computing Machinery, New York, NY, USA, 174–185.
https://doi.org/10.1145/3650212.3652119

[37] Mingyi Zhou, Xiang Gao, Jing Wu, John Grundy, Xiao Chen, Chunyang Chen,
and Li Li. 2023. ModelObfuscator: Obfuscating Model Information to Protect
Deployed ML-Based Systems. In Proceedings of the 32nd ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (Seattle, WA, USA) (ISSTA
2023). Association for Computing Machinery, New York, NY, USA, 1005–1017.
https://doi.org/10.1145/3597926.3598113

[38] Mingyi Zhou, Xiang Gao, Jing Wu, Kui Liu, Hailong Sun, and Li Li. 2024. Investi-
gating White-Box Attacks for On-Device Models. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering. 1–12.

[39] Mingyi Zhou, JingWu, Yipeng Liu, Shuaicheng Liu, and Ce Zhu. 2020. Dast: Data-
free substitute training for adversarial attacks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 234–243.

https://github.com/onnx/tensorflow-onnx
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://www.mindspore.cn/lite/docs/en/r1.7/use/obfuscator_tool.html
https://www.mindspore.cn/lite/docs/en/r1.7/use/obfuscator_tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.tensorflow.org/
https://doi.org/10.1145/268946.268962
https://doi.org/10.1145/3453478
https://doi.org/10.1145/3453478
https://github.com/PINTO0309/tflite2tensorflow
https://github.com/PINTO0309/tflite2tensorflow
https://doi.org/10.1109/iccv.2015.336
https://doi.org/10.1109/iccv.2015.336
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/icse43902.2021.00035
https://doi.org/10.1109/tpami.2020.3019967
https://doi.org/10.1145/2886012
https://doi.org/10.1109/cvpr.2019.00293
https://github.com/jackwish/tflite2onnx
https://doi.org/10.1109/dsn48063.2020.00031
https://doi.org/10.1109/dsn48063.2020.00031
https://doi.org/10.5281/zenodo.13762398
https://doi.org/10.1145/3650212.3652119
https://doi.org/10.1145/3597926.3598113

	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 Terminology
	2.2 DL Frameworks
	2.3 On-device DL Frameworks
	2.4 DL Model Attacks
	2.5 Code Obfuscation
	2.6 Model Obfuscation
	2.7 Motivation for Our Work
	2.8 Research Questions

	3 RQ1: Model Deobfuscation
	3.1 Threat Model
	3.2 DLModelExplorer
	3.3 Deobfuscation performance

	4 RQ2: Dynamic Obfuscation Strategy
	4.1 Approach Requirements
	4.2 The Dynamic Model Obfuscation Process
	4.3 Obfuscation
	4.4 Obfuscation Coupling
	4.5 Compilation
	4.6 DynaMO Effectiveness

	5 RQ3: Efficiency of DynaMO
	6 Limitations
	7 Conclusion
	References

