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Abstract—ArkTS is a new programming language dedicated
to developing Apps for the emerging OpenHarmony mobile op-
erating system. Like other programming languages (e.g., Type-
scripts) constantly suffering from performance-related code
smells or vulnerabilities, the ArkTS programming language will
likely encounter the same problems. The solution given by our
research community is to invent static analyzers, which are of-
ten implemented on top of a common static analysis framework,
to detect and subsequently repair those issues automatically.
Unfortunately, such an essential framework is not available for
the OpenHarmony community yet. Existing program analysis
methods have several problems when handling the ArkTS code.
To bridge the gap, we design and implement a framework
named ArkAnalyzer and make it publicly available as an open-
source project. Our ArkAnalyzer addresses the aforementioned
problems and has already integrated a number of fundamental
static analysis functions (e.g., control-flow graph constructions,
call graph constructions, etc.) that are ready to be reused by
developers to implement OpenHarmony App analyzers focusing
on statically resolving dedicated issues such as performance
bug detection, privacy leaks detection, compatibility issues
detection, etc. Experiment results show that our ArkAnalyzer
achieves both high analyzing efficiency and high effectiveness.
In addition, we open-sourced the dataset that has numerous
real-world ArkTS Apps.

I. Introduction
To support seamless interoperability among different

devices, our community invents a new open-source mobile
operating system called OpenHarmony, which is operated
by the OpenAtom Foundation[1] in China. At the mo-
ment, the OpenHarmony ecosystem already has numerous
applications [2]. Considering that OpenHarmony is still in
its early development stage, it shows great potential and
promising future market prospects[3], [4], [5]. However,
as an independent all-scenario operating system, Open-
Harmony features a brand-new application development
paradigm and API that are not compatible with existing
applications. Thus, a more user-friendly language, ArkTS,
has been introduced to OpenHarmony ecosystem.

In this context, we expect that the various issues (e.g.,
security, compatibility, performance, etc.)[6], [7], [8] that
have been previously encountered by the Android and
iOS ecosystems will not be less for OpenHarmony. Hence,
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the various program analysis approaches proposed to
address those issues will also need to be constructed for
OpenHarmony. Taking Android as an example, there are
numerous advanced program analysis tools that safeguard
the Android ecosystem, and the majority of these tools are
based on the static analysis framework Soot[9].

JS/TS analysis tools
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Fig. 1: Existing JS/TS Analysis Tools Inapplicable to ArkTS

Unfortunately, there is no such common static analysis
framework available for the OpenHarmony community.
As shown in Figure 1, although ArkTS originates from
TypeScript, it has introduced a multitude of innovative
features, most notably the declarative UI and its accom-
panying new syntax. The significant differences between
ArkTS and TypeScript at the source code level lead to the
addition of various new syntax nodes and structures in the
Abstract Syntax Tree (AST) and will cause multiple kinds
of errors in analyzing ArkTS codes by existing methods.
In addition, although ArkTS and TS have some similar
features, we do not consider to translate the ArkTS codes
to TS codes to enable the program analysis for ArkTS.
The rule-based translation approaches are not stable, and
the learning-based methods do not have enough training
data. As an emerging programming language, ArkTS is in
rapid development and will have more and more unique
features. Therefore, we need to invent an independent
static analysis framework to analyze the ArkTS codes.

To bridge the gap, we present to the community a
prototype tool called ArkAnalyzer1 by providing support
for the unique features of ArkTS in program analysis,
which implements various software engineering approaches
dedicated to scrutinizing OpenHarmony Apps. The imple-

1For the code related to ArkAnalyzer, please refer to https://gitee.
com/OpenHarmony-sig/arkanalyzer

https://gitee.com/OpenHarmony-sig/arkanalyzer
https://gitee.com/OpenHarmony-sig/arkanalyzer


mentation of ArkAnalyzer is adapted to the new features
of the OpenHarmony system and the emerging ArkTS
language, achieving multi-dimensional analysis. Specifi-
cally, we propose our Code Representation module and
Code Transformation module to address the definition
mismatch and structure mismatch problems in existing
program analysis methods. In addition, we collect the
extra constraints of ArkTS and solve them in our Ark-
Analyzer. The experiment results show that our method
has high efficiency (within 10 seconds for analyzing a call
graph of an App with thousands of lines of code) and
effectiveness (93.75% of accuracy in CHA and 87.95% of
accuracy in RTA).

The main contributions of our study are summarized as
follows:
1) we provide a comprehensive analysis and empirical

evaluations of ArkTS, the new programming language
for developing native applications on HarmonyOS, to
identify the challenge in analyzing the ArkTS by
existing methods.

2) We propose and open-source a novel static analysis
framework, ArkAnalyzer, which addresses the problem
of analyzing the ArkTS program with unique syntax
nodes and structures in AST.

3) We open-source a dataset of ArkTS Apps to the
community, which was collected from three official
OpenHarmony repositories 2. We manually select high-
quality Apps and repositories to improve the compre-
hensiveness and quality of evaluation results.

4) We conducted a comprehensive evaluation of ArkAna-
lyzer. It demonstrates that the Intermediate Represen-
tation (IR) generated by our method is highly readable
and our tool is efficient and effective.

II. Background: ArkTS vs. TS
In order to benefit from the existing ecosystem of Type-

Script (TS), which has gained a large number of libraries,
ArkTS attempts to retain as many features as possible
when extending the TypeScript language. Nevertheless,
in order to support a high-performance experience that is
essential for Apps running on mobile devices, ArkTS has
to make some changes compared to its original design.
Specifically, there are two major kinds of unique features:
(1) adding new features required by mobile Apps like
ArkUI, and (2) constraining the flexibility of TypeScript,
primarily its dynamic features that could impact execution
performance. We now detail these two types, respectively.

1) ArkUI: As a declarative UI framework, compared to
the traditional procedural and imperative UI approaches,
ArkUI focuses on the outcome of the UI description.
It binds the UI to reactive data, which is more effi-
cient as developers only need to concentrate on data
management. Additionally, the declarative UI offers a

2The dataset is open-sourced on https://bhpan.buaa.edu.cn/
anyshare/zh-cn/link/AA5F769683A23C43B0A4D384D70C7505EB?
_tb=none

declarative description akin to natural language, making
it more intuitive. The industry has chosen declarative UI
as the new generation model for application development
and has undertaken a corresponding restructuring of the
underlying UI component design to accommodate this
paradigm shift.

@Entry
@Component
struct Index {
  @State message: string = 'Hello World';

  build() {
    Row() {
      Column() {
        Text(this.message)
          .fontSize(50)
        Button('myButton')
          .onClick(() => {
            this.message = 'ArkUI';
          })
          .height(50)
          .width(100)
          .margin({ top:20 })
      }
    }
  }
}

Decorator

Custom Component

UI Description

System Component

Property Method

Event Method

Fig. 2: ArkUI Code Example.

As previously mentioned, the new syntactic structures
introduced by ArkUI are one of the primary reasons
why traditional JS/TS analysis tools cannot effectively
analyze ArkTS applications. In order to help understand,
we illustrate the components of ArkUI through a simple
ArkUI code example, as shown in Figure 2. Decorator
features play a pivotal role, with elements like @Com-
ponent marking custom components, @Entry specifying
entry components, and @State indicating dynamic state
variables that prompt UI updates upon modification. The
UI Description is systematically defined within the build()
method, detailing the UI’s structural elements in a clear,
declarative manner. Custom Component refers to reusable
UI blocks, such as the Index structure, which can incorpo-
rate other elements and is designated by the @Component
decorator. System Component includes fundamental and
container components built into the framework, like Col-
umn, Text, Divider, and Button, offering readily accessible
tools for developers. Property Method and Event Method
allow for detailed customization and interaction handling
within components; for instance, property methods like
fontSize(), width(), height(), and backgroundColor() ad-
just visual aspects, while event methods such as onClick()
facilitate user engagement strategies. This architecture not
only simplifies the development process but also enhances
the functionality and interactivity of the application
interfaces.

2) Syntactic Constraints.: ArkTS specification imposes
constraints on overly flexible features in TypeScript that
can affect development correctness or introduce unneces-
sary overhead during runtime. Even though these con-

https://bhpan.buaa.edu.cn/anyshare/zh-cn/link/AA5F769683A23C43B0A4D384D70C7505EB?_tb=none
https://bhpan.buaa.edu.cn/anyshare/zh-cn/link/AA5F769683A23C43B0A4D384D70C7505EB?_tb=none
https://bhpan.buaa.edu.cn/anyshare/zh-cn/link/AA5F769683A23C43B0A4D384D70C7505EB?_tb=none


straints may not cause TypeScript analysis tools to throw
errors when analyzing ArkTS code, as differences between
the two languages, they are likely to affect the accuracy of
the analysis results. For clearly presenting such Syntactic
Constraints, here are some examples: (1) any Type. ArkTS
mandates the use of static types to improve code clarity
and performance. For example, it prohibits the use of the
any type , encouraging explicit type definitions that can be
analyzed at compile time for correctness. (2) Object Lay-
out. ArkTS does not allow changes to an object’s structure
at runtime, such as adding or deleting properties, to opti-
mize runtime performance and predictability. (3) Operator
Semantics. ArkTS restricts certain operator semantics to
encourage clearer code and avoid runtime overhead, such
as disallowing the unary + operator on non-numeric types.
(4)Structural Typing. Unlike TypeScript, which supports
structural typing allowing objects with the same shape to
be considered of the same type, ArkTS requires explicit
declarations, enhancing type safety and consistency.

III. Preliminary Study
Recall that the ArkTS language is extended from the

widely used TypeScript (hereinafter referred to as TS)
programming language. When exploring the feasibility of
static analysis for ArkTS, we would like to first explore
if existing JS/TS static analysis tools can be directly
applied to analyze ArkTS code. If so, there is no need
to specifically develop a static analysis framework for the
ArkTS language.

A. JS/TS Analyzers Identification
To delve into the aforementioned question, we first

conduct an exploratory study to identify mainstream
JS/TS static analysis tools. We choose three tools that
have been widely used in academic papers or industry:
TAJS, JSAI, and ESLint.
• TAJS (Type Analysis for JavaScript) [10] is a static

program analysis tool designed to provide detailed
and precise type information for JavaScript programs.
TAJS not only detects common programming errors but
also performs type inference and generates call graphs,
among other analyses.

• JSAI [11] is another JavaScript static analysis platform
that implements a range of analysis capabilities such as
type inference, pointer analysis, control flow analysis,
and constant propagation.

• ESLint[12], a powerful and highly pluggable JavaScript
code-checking tool, is currently one of the most widely
used JS/TS code analysis tools. ESLint supports mod-
ern JavaScript (ECMAScript) features and can integrate
with various editors and build tools, thus enhancing
development efficiency and code consistency.

B. Dataset
To support the preliminary study, we need to form

a real-world dataset. We collect Apps from three offi-

cial OpenHarmony organization repositories: the Open-
Harmony repository [13], OpenHarmony-SIG [14], and
OpenHarmony-TPC [15]. The main repository is the core
codebase of the OpenHarmony project, containing the
fundamental components of the operating system and
serving as the primary interaction and contribution point
for developers and contributors. The OpenHarmony-SIG
repository supports specific interest groups (SIG), respon-
sible for managing development in particular technical
areas such as the graphics subsystem and the device driver
subsystem. The OpenHarmony-TPC repository focuses
on collecting and maintaining third-party open-source
libraries, facilitating access for developers, and ensuring
compliance with open-source standards.

It is important to note that the dataset used in
this study does not include all applications, but rather
underwent a selection process. We only select applications
where the repository has more than 10 stars and the
number of lines of ArkTS code exceeds 100, ensuring that
the dataset consists of applications with a certain level of
quality. As of April 10, 2024, the collected dataset includes
371 OpenHarmony repositories, 100 OpenHarmony-SIG
repositories, and 147 OpenHarmony-TPC repositories.
Ultimately, we collected 618 OpenHarmony applications.

C. Results

Our results indicate that the existing tools (i.e., TAJS,
JSAI, and ESLint ) are entirely incapable of analyzing
ArkTS applications comprehensively. Among the three
tools we tested, none were able to fully analyze any of
the applications without encountering errors.

Upon reviewing the specific error descriptions, we ob-
served that existing tools might be successful in analyzing
code that does not deviate from standard TypeScript.
However, when attempting to analyze code that incorpo-
rates new features unique to ArkTS, such as ArkUI and
extra constraints, the tools produced ”Parsing error” mes-
sages. Our collected applications have 7199 ArkTS code
files. 3601 and 3138 files cannot be analyzed by TAJS and
ESLint due to the ArkUI-related problems, respectively.
3585 and 2914 files cannot be analyzed by TAJS and
ESLint due to the extra constraint problems, respectively.
For JSAI, it even cannot successfully analyze any of the
ArkTS code files, and its identical error messages prevent
us from classifying the causes of the errors. Indeed, static
analysis techniques are usually sensitive to programming
languages, as different languages have different syntax
rules, different semantics, and different language features.

Finding of the Preliminary Study

Existing JS/TS-based static analyzers cannot be ap-
plied to analyze OpenHarmony Apps. There is hence a
strong need to design and implement dedicated static
analyzers for OpenHarmony.



IV. Methodology
In this section, we will detail our solution ArkAnalyzer.

A. Motivation
According to the results in Section III-C, we need to

invent new methods to address the problems in analyzing
the ArkTS using existing analyzers. Before presenting our
method, we first analyze the errors in existing analyzers:
• Failure by ArkUI - Definition Mismatch: As a new program-

ming language, ArkTS defines new declaration keywords
such as struct with a unique internal structure. Those
structures do not exist in TypeScript, so analysis tools
cannot recognize them. In addition, ArkUI allows using
a number of decorators without prior definition (e.g.,
@Entry, @Component, @State in Figure 2), which is not
permitted in TypeScript and would cause errors in the
existing compilers and analysis tools. We call this kind of
error Definition Mismatch. To address it, in the Code
Representation module of our approach, ArkAnalyzer
enable the modeling of mismatched definitions within
ArkTS using a newly designed AST.

• Failure by ArkUI - Structure Mismatch: ArkUI contains
nested system components (e.g., Row() and Column()
in Figure 2), which are used in a way similar to
the structure of function declarations, but without
the ‘function’ keyword, and allow continuous built-in
function calls at the end of the component. Therefore,
the function structures of some ArkTS programs are
not compatible with the existing analyzers which are
designed for analyzing TypeScript’s syntax rules. We
call this kind of error Structure Mismatch. To this
end, we propose a Code Transformation module to
simplify the ArkTS code and support the analysis of
the mismatched function structures.

• Extra Constraints: As we mentioned in the Background,
compared with TypeScript, ArkTS uses extra con-
straints to optimize the development correctness and
runtime overhead. These extra constraints such as
Any Type, Object Layout, Operator Semantics, and
Structural Typing (see Section II-2) are not compatible
with existing program analysis methods for TypeScript.
Because we fix the extra constraint errors in an ad-hoc
manner, we omit them in this paper.
Therefore, we design and implement in this study a

prototype tool called ArkAnalyzer, which aims at bridging
the gap between the existing program analysis methods
and ArkTS. Our method can remove the aforementioned
errors while having high analyzing efficiency for ArkTS.

B. Overview of ArkAnalyzer
We now briefly introduce the core functions included

in the ArkAnalyzer framework. As shown in Fig. 3, Ark-
Analyzer by itself is a framework dedicated to facilitating
the implementation of App analyzers such as tools for
detecting the usages of sensitive APIs or characterizing
Null-pointer issues. Inside ArkAnalyzer, the input App

code will be handled in two layers, with the bottom layer
responsible for basic analyses and the upper layer for more
advanced analyses.

Specifically, in the bottom layer, ArkAnalyzer starts
with the AST generated by the ArkTS compiler to model
the application source code, and then transforms and
augments the code to facilitate subsequent analysis. Then,
in the upper layer, ArkAnalyzer leverages the outputs
of the first layer to represent the App code with more
advanced data structures (such as call graphs and inter-
procedural data flows).

We now detail these modules to help readers better
understand the design of ArkAnalyzer.

OpenHarmony 
Apps Analysis Results

Examples of Applications

Sensitive API 
Scan

Null-Pointer 
Detection

Call Graph Construction Data-flow Analysis

ArkAnalyzer

Scene Model

CFG

Code Representation

3-address Code

Desugaring

Code Transformation

Def-use Chain

Type Inference

Code Augmentation

Fig. 3: Overview of the Design of ArkAnalyzer.

C. Code Representation
In ArkAnalyzer, We employ a newly designed AST

specifically tailored for ArkTS analysis. This AST is a
product of the ArkTS compiler, designed to accommodate
the new features of ArkTS and support the modeling of
ArkUI code segments. In each analysis, Scene serves as
the entry point and contains comprehensive information
about the project. It is designed to provide a unified
context environment, enabling access to and manipulation
of various program details during the analysis process.
Figure 4 illustrates the core classes managed by the Scene
model. We now detail the representative ones.

ArkFile represents each individual file, simplifying the
management of project files. In the context of the ArkTS
language, ArkNamespace object is designed to encapsulate
the information and structure within a namespace. This
facilitates access to and handling of classes and methods
within the namespace scope, maintaining the logical orga-
nizational structure of the code. Given that ArkTS sup-
ports object-oriented programming, the analysis of object-
oriented structures is essential. ArkClass object represents
a class in the object-oriented paradigm, encapsulating
internal structural information such as attributes and
methods. Methods and Fields of a class are abstracted
into ArkMethod and ArkField classes, respectively.

To address the definition mismatch problem, we ab-
stract struct as ArkClass because it encompasses its own
properties and functions, bearing similarities to class in



structure. The ArkClass corresponding to struct will have
specific identifiers and special properties, such as viewTree,
which represents its corresponding ArkUI component tree.
Through the component tree, it is possible to deduce
which components the struct uses and the composition
relationships between them. Additionally, we have intro-
duced an abstract class Decorators to correspond to the
extensive use of decorators in ArkUI. Each namespace,
class, method, and field can obtain their corresponding
decorators through specified interfaces.

Scene
projectName
filesMap
namespacesMap
classesMap
methodsMap

buildSceneFromProjectDir()
inferTypes()
getFilesMap()
getNamespacesMap()
getClassesMap()
getMethodsMap()

ArkClass
classSignature
modifiers
viewTree?

methods
fields

getDecorators()
getMethods()

getFields()

ArkFile
fileSignature
namespaces
classes
importInfoMap
exportInfoMap
getNamespaces()
getClasses()
getImportInfos()
getExportInfos()

ArkNamespace
namespaceSignature
modifiers
namespaces

classes
exportInfos
getDecorators()
getNamespaces()
getClasses()
getExportInfos()

ArkMethod
methodSignature
modifiers
viewTree?
body
returnType

getDecorators()
getParameters()
getBody()
getCfg()
getReturnType()

ArkField
fieldSignature
modifiers
type

getDecorators()
getType()

ArkFiles

ArkClasses

ArkMethods

ArkNamespaces

Classes

Classes Fields

Methods

Namespaces

Namespaces

Fig. 4: The design of the core classes designed for representing
code under analysis.

As shown in Figure 5, the actual code of a given method
(i.e., ArkMethod) will be recorded in a so-called ArkBody
class, which is further represented via two Control Flow
Graphs, namely OriginalCfg and Cfg. Cfg is the simplified
version of the OriginalCfg, which represents the control-
flow graph built based on the original code of the method.
Each Cfg is composed of several BasicBlock, and each
BasicBlock contains a series of sequentially executed lines
of code (i.e., without branches). In this work, each line of
code is recorded via a Stmt class.

ArkMethod ArkBody OriginalCfg

Cfg

BasicBlock BasicBlockBasicBlock

Stmt Stmt

Simplify

Fig. 5: The design of the ArkMethod class.

D. Code Transformation
After code representation, we leverage a code trans-

formation step to mitigate the structure mismatch prob-
lem that may cause difficulties when performing exist-
ing analyzers to ArkTS. The ArkTS compiler directly
transforms the source code into bytecode[16]. Although
intermediate code, such as Panda IR, can be obtained
through disassembly tools, it is more bytecode-oriented
and lacks readability, which contradicts ArkAnalyzer’s
design philosophy of high readability and user-friendliness.
Therefore, we need to design our own form of IR and
establish the corresponding transformation rules.

Specifically, we take two approaches to transform the
ArkTS code: (1) Change the code to align with the three-
address form, and (2) Transform the code to mitigate
certain features such as removing loops, naming anony-
mous classes or functions, transforming system compo-
nents into regular code form, etc. We now detail these
two approaches, respectively. Thus, our simplified code
can be handled by the following analyzing steps (i.e.,
Section IV-E, IV-F).

1) Three-address Code.: Three-address code is a com-
mon intermediate code representation format, for which
each line of code is ensured to have at most three
operands (addresses). In addition to basic arithmetic
expressions, syntactic constructs such as object property
access, function calls, and array indexing also need to be
converted into three-address code. Converting source code
to three-address code has significant benefits for program
analysis. Indeed, Its simple and uniform format simplifies
the program structure, making it easier to handle and
analyze.

In ArkAnalyzer, some of the representative conversion
rules transforms source code to three-address format are
highlighted in Table I. Given a complex statement, we
will divide it into several simple statements. To do so,
we will create temporary variables to bridge these simple
statements (i.e., keep the same code semantics). Regarding
complex function call expressions (including expressions as
arguments, nested calls, and call chains), ArkAnalyzer will
progressively break them down in the order of execution.
The result of each step is stored in temporary variables.
By applying these rules, complex code is transformed into
a more manageable three-address code format, laying the
groundwork for further optimization and analysis.

2) Code Desugaring: After representing the code to
three-address format, we go one step deeper to further sim-
plify the code by conducting a desugaring phase. Syntactic
sugar refers to the addition of certain syntax features
in a programming language that make the code more
concise and readable without changing the language’s
functionality. These features typically simplify common
programming patterns, allowing programmers to express
the same logic in a more straightforward manner. However,
those syntactic sugars, although being more friendly to
developers, do make code analyses more complex. To that



TABLE I: Rules applied to achieve three-address code.

No Rule Before After

1 Complex Expression x = a.b + c.d
temp1 = a.b
temp2 = c.d
x = temp1 + temp2

2 Expression Parameter x = fun(a + b) temp1 = a + b
x = fun(temp1)

3 Nested Function Call x = funA(funB()) _ret = funB()
x = funA(_ret)

4 Subscript Operation x = funA()[1] _ret = funA()
x = _ret[1]

5 Call Chain Splitting f1().f2().f3()
x = f1()
y = x.f2()
z = y.f3()

end, towards preventing syntactic sugar from hindering
code analysis, we perform a code desugaring phase by
transforming code using syntactic sugar into a semanti-
cally equivalent form.

Table II highlights some of the representative transfor-
mation rules adopted by ArkAnalyzer. First, increment
operators (like i++) and compound assignments (like
i /= 5) need to be converted to standard assignment
operations. Template strings, using string interpolation,
should be transformed into string concatenation opera-
tions. Arrow functions and Anonymous functions should
be converted into regular function expressions. Object
literals should be converted into explicit class definitions
and instantiations. For better supporting the represen-
tation of control flows, we also take the opportunity
to simplify the code by transforming if-else and loop
statements into structures with explicit labels and jumps.
These transformations standardize the code, making it
easier for subsequent analyses.

The ninth row in the table demonstrates ArkAnalyzer’s
handling of nested system component code within ArkUI,
which can cause the structure mismatch problem in exist-
ing analyzers.ArkAnalyzer maps each system component
to the corresponding interface in the OpenHarmony SDK.
First, each component is associated with its corresponding
create function and pop function. Then, subsequent func-
tion calls on the component are applied to the temporary
variable returned by the create function. In this way, the
special function in ArkUI (the build function of the struct)
is transformed into a regular code format, resolving the
structure mismatch issue.

E. Code Augmentation
The code representation and transformation steps have

greatly reduced the complexity of the code under anal-
ysis. However, there is still common information that is
constantly required by follow-up analyzers but is not yet
available in the current code representation. To further
facilitate the implementation of App analyzers, we add
another step to ArkAnalyzer to further augment the code.
Specifically, we pre-calculate data-flow information for
each method by building a def-use chain and the type
information for local variables based on a set of pre-defined

TABLE II: Transformation rules applied to simplify code at
the IR level.

No Rule Before After
1 Increment Operators i++ i = i + 1
2 Compound Assignment i /= 5 i = i / 5

3 Template Strings greet = !${name}! temp1 = name + ‘!’
greet = ‘!’ + temp1

4 Arrow Function fun = (x) => x + 1
def Anonymous_1(x)

return x + 1
fun = Anonymous_1

5 Anonymous Function
set(fun() {

...
}, 1)

def Anonymous_1():
...

set(Anonymous_1, 1)

6 Anonymous Class let x = {name: ‘a’};

class Anonymous_1{
name: string

}
x = new Anonymous_1()
x.name = ‘a’

7 Control Flow (if)
if (x > 0)

x++
else

x--

label1 :
if (x > 0)

goto label2 label3
label2:

x++
goto label4

label3:
x--
goto label4

label4:
//following statements

8 Control Flow (while)
while (x > 0)

x--
console.log(x)

label1 :
if (x > 0)

goto label2 label3
label2:

x--
goto label1

label3:
console.log(x)

9 System Component
Row (){

Column (){
}.height(100)

}

temp0 = RowInterface.create()
temp1 = ColumnInterface.create()
temp1.height(100)
ColumnInterface.pop()
RowInterface.pop()

rules (more advanced.3) We now detail these two sub-
steps, respectively.

1) Def-use Chain: Data flow analysis is used to track
the path from the definition of a variable to its usage
within a program. The primary technique frequently
adopted by our community to record such data depen-
dencies in the program is to build the so-called def-use
chains. The chains are considered important for optimizing
compilers, code refactoring, detecting potential errors, and
identifying vulnerabilities. Analyzing these chains within a
single program or function can help understand how local
variables are initialized and utilized, thereby ensuring the
correctness and efficiency of data flow.

2) Type Inference: Compared to TS, ArkTS imposes
stricter type restrictions but still supports implicit type
declarations. ArkAnalyzer has formulated a series of rules
for analyzing code statements to infer the type infor-
mation of variables and other syntactic elements in the
code[17]. ArkAnalyzer conducts a comprehensive scan of
code statements within a project, initially extracting type
information from individual statements and assigning it to
corresponding variables. If direct inference is not possible,
type propagation will be carried out based on contextual
information.

3At this stage, only lightweight analyses are considered for the sake
of performance, i.e., data-flow analysis is limited within methods,
type analysis is implemented without leveraging points-to analysis.
More advanced analyses are also supported by ArkAnalyzer but are
at later stages.



TABLE III: Rules applied to infer types.

No Rule Pattern Type of x
1 Compare x = a op b, op ∈ Eq, NotEq, Lt,

LtE, Gt, GtE, Is, IsNot, In, NotIn
bool

2 BinOp x = string * number x = bool *
number

str bool

3 Heap Object Create x = new ClassA() ClassA
4 Return x = func() func’s return type
5 Field Reference x = ClassA.field ClassA.field type

The specific rules leveraged in this step are listed in
Table III. Calculations and comparisons between simpler
primitive types can directly determine the result’s type.
We also determine the declared class based on the literal
following the new keyword. Additionally, by referencing
the declarations of corresponding classes, methods, and
properties, we parse the types of the respective compo-
nents within the statement.

F. Call Graph Construction
Call graph is a fundamental data structure that is

required by many analysis tasks and is essential to support
project-wide analyses. Call graph generally represents the
relationships between method invocations within the pro-
gram. In a given call graph, nodes represent methods, and
directed edges signify the calling relationships initiated
by the caller method pointed to the callee method. In
this section, we will discuss the core algorithms adopted
by ArkAnalyzer for call graph construction. We have
implemented two algorithms: (1) Class Hierarchy Analysis
(CHA) and (2) Rapid Type Analysis (RTA)[18], for which
we will detail them respectively in this section.

1) CHA: Class Hierarchy Analysis: ArkTS is an object-
oriented programming language. To support the object-
oriented features, ArkAnalyzer organizes the project under
analysis in the form of classes, and their inheritance
relationships are recorded, which is referred to as a class
hierarchy tree.

The CHA algorithm builds the call graph by parsing the
invocation statements within the code to identify basic
invocation relationships and form the call graph, e.g.,
building an edge from method m1 to method m2. It then
augments the call graph by adding new edges based on
the aforementioned hierarchy tree.
Listing 1: Example code snippet for demonstrating the princi-
ples of constructing call graphs.
1 function makeAnimalSound(animal: Animal) {
2 animal.sound();
3 }
4
5 function main() {
6 let dog = new Dog();
7 let cat = new Cat();
8 makeAnimalSound(dog);
9 }

Taking Listing 1 as an example, which illustrates
a code snippet (omitting related class definitions),
and the actual class hierarchy is presented in Fig-
ure 6a, where all classes have sound method. In

this case, when Animal.sound is called, ArkAnalyzer
will add three new edges (i.e., makeAnimalSound →
Dog.sound, makeAnimalSound → Cat.sound) and
makeAnimalSound → Cow.sound) to the call graph in
6b because these three edges could also be true due to
the polymorphic characteristic, one of the core features
adopted in the object-oriented concept. Observant read-
ers may have already noticed that the CHA algorithm
offers a call graph that is as comprehensive as possible,
attempting to record all the possible calling relationships.
This, however, will unavoidably introduce incorrect edges
that subsequently would lead to false positive results for
downstream analyzers.

2) RTA: Rapid Type Analysis: Building on the CHA,
the RTA algorithm imposes certain constraints to filter
potential calling relationships, thereby reducing the over-
approximations inherent in CHA. During the construction
of RTA, the actual creation of heap objects (i.e., instances
created via the new keyword) is tracked and recorded.
Upon encountering a method call statement and identi-
fying potential call targets from the class hierarchy, RTA
uses whether the class of the call target has been modeled
as a criterion. It removes all methods from the call target
that have not been modeled, ensuring that only relevant
methods are considered. Given the same code snippets
shown in Listing 1, since only classes Dog and Cat are
instantiated (i.e., class Cow is not instantiated), the edge
makeAnimalSound → Cow.sound will be removed by the
RTA algorithm(cf. Figure 6c), resulting in preciser call
graph compared to that built by the CHA algorithm.

V. Evaluation
We evaluate the efficiency and accuracy of ArkAnalyzer

while exploring the readability of the IR4 designed by
ArkAnalyzer and the capability of supporting the imple-
mentation of advanced analyzers. Here are the details of
the dataset and experiment environment:

a) Dataset: Recall that we have formed a dataset
of 618 Apps when performing the preliminary study,
as discussed in Section III-B. In that dataset, we have
endeavored to collect and select all the high-quality
OpenHarmony Apps that are available to the public. In
this section, we reuse this dataset for evaluation.

b) Experiment Environment: Our method is evalu-
ated on a workstation with Intel(R) Core(TM) i7-14700KF
CPU, 16GB of RAM and the 64-bit Windows 11 OS.

A. Efficiency of ArkAnalyzer
The performance of static code analysis tools is crucial,

as they must provide feedback as quickly as possible while
maintaining analytical accuracy[19], especially in Contin-
uous Integration/Continuous Delivery (CI/CD) pipelines.
As previously mentioned, the Scene is the core structure of

4Readability of static analyzer’s IR is considered very important
as developers often need to read the IR to debug the analyzer (e.g.,
to understand its behavior).
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Fig. 6: Call graph construction.

ArkAnalyzer, and all analyses depend on the construction
of the Scene. Therefore, to evaluate its performance,
we tested the time required to construct Scenes for all
applications in the dataset. Additionally, we measured the
time taken for call graph analysis to demonstrate the high
performance of ArkAnalyzer.

Figure 7a shows the result of scene build time distribu-
tion. The majority of scene build times are concentrated
between 0.4 and 0.5 seconds. A small portion of more
complex scenes take longer to build, but all are built
within 1 second. Figure 7b and Figure 7c demonstrate
the performance of ArkAnalyzer during CHA and RTA
analyses. Due to significant variations in some data, we
applied a logarithmic transformation to both the x and y
axes to enhance the clarity of the pictures. It turns out
that whether using CHA or RTA, analysis of applications
within a thousand of lines of code can be completed within
1 second, and analysis of applications with thousands of
lines of code can be completed within 10 seconds. This
result demonstrates the efficiency of call graph analysis.

These experimental results demonstrate that ArkAna-
lyzer exhibits excellent performance in application analy-
sis, with extremely high code processing efficiency, fully
reflecting its effectiveness and stability in handling appli-
cations of varying scales.

B. Accuracy of ArkAnalyzer
For the sake of simplicity, we validate the overall

accuracy of ArkAnalyzer by testing the accuracy of the
call graph module, which is considered one of the most
crucial feature for program analysis tools.

TABLE IV: the accuracy of ArkAnalyzer in analyzing call
graph

Dataset Algorithm TP All Precision Recall
Benchmark CHA 80 80 96.39% 100%

RTA 78 80 100% 97.50%
Real Apps CHA 351 375 99.72% 93.75%

RTA 332 375 99.70% 87.95%

We conducted experiments on two datasets: one consist-
ing of a series of benchmark test sets that we specified,
and the other comprising randomly selected samples from
the dataset of real HarmonyOS applications mentioned
in Section III-B. For each dataset, we performed call
graph analysis using both CHA and RTA. The tests
were conducted at the level of call chains, where we
compared the call chains obtained by ArkAnalyzer with

those manually verified, calculating precision and recall.
The results are shown in Table IV.

For the Benchmark dataset, the CHA algorithm
achieved a precision of 96.39% and a recall of 100%, cor-
rectly identifying all 80 true positives (TP) out of 80 total
calls. On the same dataset, the RTA algorithm yielded a
precision of 100% and a recall of 97.50%, with 78 true
positives correctly identified out of 80 calls. The CHA’s
strategy is to consider all methods with the same name
in subclasses as potential call targets when the invoked
method is identified within a calling statement and when
the calling object has subclasses. This approach results
in false positives in benchmark testing sets for the CHA
algorithm, and RTA apply a stricter type check to avoid
false positives. For the Real Apps dataset, CHA achieved a
precision of 99.72% and a recall of 93.75%, identifying 351
true positives out of 375 total calls. The RTA algorithm on
this dataset produced a precision of 99.70% but a slightly
lower recall of 87.95%, correctly identifying 332 true
positives out of 375 calls. Both CHA and RTA achieved
high precision. However, in certain complex invocations or
specific method calls(function pointers and rare instances
of HarmonyOS SDK calls), the algorithm may fail to
accurately locate method declarations, resulting in false
negatives. Furthermore, the type checking employed by
the RTA can lead to the incorrect exclusion of certain
method calls. Overall, the results indicate that both
algorithms performed well, with CHA showing slightly
higher precision and recall results than RTA, particularly
on the real applications dataset.

C. Readability of ArkAnalyzer-IR
To evaluate the readability of intermediate representa-

tion (IR) in ArkAnalyzer, we designed and implemented a
questionnaire survey. We searched for participants based
on their expertise in programming and ArkTS. The 17
participants’ programming experience ranges from one
year to eight years. Among them, six participants are
experts of ArkTS while others only have few ArkTS
skills. The questionnaire included six rating items focused
on combination operations, conditional branches, arrays
and loops, function calls, anonymous functions, and a
composite score. The rating scale employed a five-point
system, where 1 indicated “very difficult to understand”
and 5 indicated “very easy to understand.” Additionally,
the questionnaire featured a non-mandatory open-ended
question to gather specific feedback from respondents on
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Fig. 7: ArkAnalyzer Analysis Performance Scatter Plot

challenging aspects of the intermediate code. A total of
17 valid responses were collected, and the average scores
for the rating items are presented in the Table V.

TABLE V: Average Scores for Readability of Intermediate
Code.

Item Average Median Min Max
Combination Operations 4.82 5 4 5
Conditional Branches 4.37 5 1 5
Arrays and Loops 3.71 4 2 5
Function Calls 3.65 4 1 5

Anonymous Functions 4.00 5 2 5
Composite Score 4.06 4 3 5

The results reveal differences in readability among var-
ious types of intermediate code. Specifically, combination
operations received the highest average score, indicating
their clear structure and ease of understanding. In con-
trast, arrays and loops, as well as function calls, had lower
scores, respectively, likely due to their complexity and
the inclusion of extraneous and redundant information,
as further confirmed by the open-ended responses. Both
the average and median of the composite scores reached
4, suggesting that most intermediate code performs well
in terms of readability.

D. Capability of ArkAnalyzer
To demonstrate the the practical utility of ArkAnalyzer,

we now present two concrete App analyzers that are
implemented on top of ArkAnalyzer. These two examples
are selected because of their simplicity (with only a few
lines of code). The ArkAnalyzer by itself is designed to
be as generic as possible and thereby it should be able
to support the implementation of as many App analyzers
(including ones involving complicated logic) as possible.

1) Sensitive API Scan: Scanning sensitive API in the
code is crucial for ensuring the security, performance, and
privacy of software. Sensitive APIs may involve accessing
personal information or system-level resources of users[20].

ArkAnalyzer enables precise and convenient API scan-
ning. As previously mentioned, ArkAnalyzer provides var-
ious call graph analysis algorithms that allow developers
to accurately identify specific functions in projects even

with extensive usage of advanced object-oriented features
such as inheritance and polymorphism.

Listing 2 provides an example of scanning code for
locating log invocations. Given a scene and an array
of MethodSignature as entry points, we can obtain the
corresponding project call graph. The returned result is
a map, with the key being the caller and the value being
the callee. By traversing the map, it is very easy to find
out which functions call the target function.
Listing 2: Code snippet to locate the usage of a given API.

1 function scanLog(scene:Scene, entryPoints: MethodSignature[],
targetMethodSig: MethodSignature) {

2 let callGraph = scene.makeCallGraphCHA(entryPoints);
3 let calls = callGraph.getDynEdges();
4
5 calls.forEach((callees: Set<MethodSignature>, caller:

MethodSignature) => {
6 if (callees.has(targetMethodSig)) {
7 console.log(caller.toString());
8 }
9 });
10 }

This example demonstrates the usefulness of ArkAna-
lyzer, i.e., with the help of ArkAnalyzer, one only needs to
write a few lines of code in order to implement a concrete
program analysis task.

2) Null-pointer Analysis: Null pointer errors are a
common type of error in programming practices, which
occur when uninitialized pointers are used. These errors
not only cause program crashes during runtime, severely
affecting user experience, but may also lead to data loss
or inconsistencies in program state[21]. Therefore, there is
a need to automatically detect and thereby mitigate these
errors before releasing the code to public. However, it is
non-trivial to automatically locate this kind of error, as it
involves field-aware inter-procedural data flow analysis.

Listing 3: Sample code with an Null-pointer error.
1 class Property{ pp=1; }
2 class T{
3 p: property;
4 printP(){ console.log(this.p.pp); }
5 }
6 function Main(){
7 let t1 = new T();
8 t1.printP(); // null pointer error
9 }



For example, Listing 3 illustrates an interprocedural
null pointer error. In the Main function, t1.p.pp will be
utilized. But in reality, t1.p is undefined at this point,
which will cause the program to crash.

To facilitate the implementation of inter-procedural
data-flow analyses, we have implemented in ArkAnalyzer
the famous IFDS (Interprocedural Finite Distributive Sub-
set) algorithm[22], [23], which provides a flexible frame-
work that allows developers to define data flow facts and
transfer functions as needed. Taking the aforementioned
null-pointer error detection as an example, one only needs
to extend the given IFDS framework to define how will the
data propagate. Figure 8 illustrates the handling process
of the example code in Listing 3.

Generally, the data propagation between statements
is divided into four types of edges: Normal Edge, Call
Edge, ReturnToExit Edge, and CallToReturn Edge. Each
type of edge has a different data flow processing function.
Ultimately, ArkAnalyzer will accurately detect which line
of code will cause a null pointer exception.

t1 = new t()

T.constructor() 
Entry

this.p = undefined

T.constructor() 
Exit

T1.printP()

Undefined:

Undefined:

Undefined: this.p

Undefined: this.p

Undefined: t1.p T.printP() 
Entry

console.log(this.p.pp)

T.printP() 
Exit

Main() 
Entry

Main() 
Exit

Undefined:

Undefined: t1.p

Undefined:

Undefined: this.p

Undefined: this.p

Normal Edge

Call Edge

ExitToReturn Edge

CallToReturn Edge

Main() 

T.constructor() 

T.printP() 

Fig. 8: The process to implement Null-pointer detectors.

This example further demonstrates the usefulness of
ArkAnalyzer, being able to be leveraged to implement
automated null pointer error detector.

VI. Threats to Validity
a) Internal threats to validity: The efficiency eval-

uation results (Section V-A) may be affected by other
services running in the experimental environments (i.e.,
64-bit Windows 11). Besides, in the accuracy evalua-
tion(Section V-B), we employed a sampling approach
to manually verify the invocation edges. This inherently
carries the potential for inaccuracies.

b) External threats to validity: Considering that
OpenHarmony is still in its early development stage,
the features of ArkTS may change a lot. Our proposed
ArkAnalyzer needs continuous updates in the future.
Moreover, the dataset of OpenHarmony applications in
our study was conducted up to April 2024. Given the
rapid development pace of the HarmonyOS ecosystem,
it is anticipated that the number of applications has
significantly increased since then, and some applications
in our dataset may have been updated.

VII. Related Work
Static analysis has been regarded as one of the most im-

portant techniques in the field of software engineering[24],
[25], assisting developers and researchers in security
analysis[26], [27], [28], vulnerability detection[29], [30],
[31], and so on. To facilitate the development of static
analysis approaches, our fellow researchers and practi-
tioners have proposed to our community various static
analysis frameworks. Table VI summarizes some of the
representative frameworks grouped based on their tar-
geted programming languages, such as Java [9], [32],
[33], [34], [35], C/C++[36], [37], [38], [39], JavaScript
and Typescript[10], [11], [12], Python[40], Swift[41], and
Rust[42].

a) Program analysis tools: A large number of static
analysis tools have emerged based on static analysis
frameworks, such as FlowDroid for detecting sensitive
data-flows[26], CiD for detecting API-induced compat-
ibility issues[43], IccTA for inter-component data flow
analysis[27], etc. These tools each focus on specific areas
of code analysis, helping developers improve code quality
and security.

TABLE VI: The list of representative static analysis frame-
works.

Language Framework Paper Title Or GitHub Page

Java
Soot/SootUp Soot: A Java bytecode optimization framework

WALA https://github.com/wala/WALA
Doop Strictly declarative specification of sophisticated

points-to analyses
Tai-e Tai-e: A developer-friendly static analysis frame-

work for Java by harnessing the good designs of
classics

C/C++ SVF SVF: interprocedural static value-flow analysis
in LLVM

PhASAR Phasar: An inter-procedural static analysis
framework for c/c++

JS/TS
TAJS Type Analysis for JavaScript
JSAI JSAI: a static analysis platform for JavaScript
ESLint https://github.com/eslint/eslint

Python Scalpel Scalpel: The python static analysis framework
Swift Swan Swan: A static analysis framework for swift
Rust RUPTA A Context-Sensitive Pointer Analysis Frame-

work for Rust and Its Application to Call Graph
Construction

VIII. Conclusion
In this work, we present the first static analysis frame-

work ArkAnalyzer for OpenHarmony Apps to the com-
munity. ArkAnalyzer addresses the problems of existing
program analysis methods and has a set of common
features (e.g., call graph construction) that are recurrently
required when implementing in-depth static analyzers such
as privacy leak detectors and compatibility issue detectors.
We have collected and open-sourced a HarmonyOS native
application dataset and conducted a series of evaluations
on ArkAnalyzer, confirming its high performance and
accuracy, intermediate representation (IR) readability,
and ease of use. As for our future work, we commit to keep
improving the ArkAnalyzer framework so as to support
our fellow researchers in implementing efficient tools to
resolve realistic App analysis problems.
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