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When mobile meets LLMs, mobile app users deserve to have more intelligent usage experiences. For this to happen, we argue
that there is a strong need to apply LLMs for the mobile ecosystem. We therefore provide a research roadmap for guiding our
fellow researchers to achieve that as a whole. In this roadmap, we sum up six directions that we believe are urgently required
for research to enable native intelligence in mobile devices. In each direction, we further summarize the current research
progress and the gaps that still need to be filled by our fellow researchers.

CCS Concepts: • Software and its engineering → Software safety; Software reliability.

1 INTRODUCTION
Large Language Model (LLM) has been the emergent buzzword in the SE community since the successful release
of ChatGPT, a conversation-based AI system powered by OpenAI’s GPT-3.5 model, and the successful release of
Copilot, GitHub’s AI developer tool supported by OpenAI’s Codex model. It quickly becomes the most popular
research topic in software engineering (if not in computer science). The research efforts mainly focus on exploring
two directions. The first direction is related to applying SE methods to improve LLMs. Indeed, as a new technique,
LLM also comes with limitations that need to be resolved in order to apply LLMs in practice, as has happened
with other emerging technologies. The other direction is to apply LLMs to resolve traditional SE tasks (e.g., code
generation, unit test generation, etc.). Our fellow researchers have experimentally shown that LLMs can achieve
better results, compared to approaches that do not use AI or only adopt pre-LLM AI techniques.
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Mobile Software Engineering (MSE) has been a hot research area in Software Engineering (SE). It generally
involves applying traditional software engineeringmethodologies (concepts, methods, tools, models, programming
styles) to mobile software systems (such as Android or iOS) and apps, which are often distributed through app
stores [88, 99, 101, 119, 215]. So far, this hot research topic has attracted lots of attention from software engineering
researchers who have subsequently made significant contributions to the MSE community from various aspects,
such as Security and Privacy Analysis [41, 66, 98, 100, 104, 154, 166], AppQuality Assurance [15, 102, 103, 167, 226],
App Store Analysis [140, 183, 184], etc.

With the great results achieved by applying LLMs for SE and the flourishing mobile ecosystem, we believe it is
time to apply LLMs for mobile. The smart devices will only be “smart” if LLMs are embedded. Actually, many
smartphone producers have already started to deploy LLM directly on devices. For example, OPPO claims that it is
the first smartphone company to deploy an LLM with 7 billion parameters directly on the device.1 As highlighted
on the official Android website, On-device AI is a great solution for use cases where low latency, low cost, and
privacy safeguards are primary concerns. Indeed, there are many scenarios where rich AI experiences are more
suitable to be done on the device instead of on the cloud. For example, latency-sensitive tasks such as phone call
translation need to be achieved nearly at the same time. Data-intensive tasks such as automated online meeting
summarization need to be achieved on the device as the meeting records are usually very big and thereby will
require huge data transmission costs if processed on the cloud. Other AI tasks that have to be implemented based
on on-device models include features that need to be always on no matter the phone is connected to the internet
or not, or features that require sensitive user data that is not allowed to be sent outside the devices.

At the moment, our fellow researchers have also seen the opportunities to apply LLMs for mobile and hence
conducted several studies in this field. However, the research roadmap for applying LLM for mobile has not yet
been sketched. To fill this research gap, in this position paper, we commit to summarizing the initial roadmap of
applying LLM for mobile. Figure 1 provides an overview of the roadmap. In general, we divide the LLM for mobile
tasks into two phases: LLM Supply and LLM Use. The former phase involves preparing the right LLMs for solving
downstream tasks, while the latter phase concerns the usages (or inference) of LLMs in mobile devices through
local models (i.e., deployed in the device as part of the operating system) or online models (i.e., deployed in the
cloud). In these two phases, we further summarize six research directions that need to be further researched in
order to seamlessly integrate LLMs into the mobile ecosystem. The six directions are depicted below.

• Preparing datasets for fine-tuning LLMs dedicated to mobile. In particular, we advocate that the
datasets should include User Experience (UX) scenarios that enable better ways for apps to interact with
LLMs, SE scenarios that allow more efficient app development and analyses, and other multi-modal data
processing scenarios (e.g., sensor data, app logs) that enable LLMs to process various types of data and
tasks on mobile devices.

• Applying LLMs for mobile app development and analysis. For app development, the whole lifecycle
(i.e., requirement, design, coding, testing and debugging, maintenance, etc.) should be considered. For app
analysis, both static code analysis and dynamic app testing need to be covered.

• Serving LLM on mobile. LLMs are powerful in processing our personal or work data. Deploying LLMs
on cloud servers must share the user’s sensitive data with remote servers. In addition, accessing remote
LLMs is impractical where internet connectivity is unavailable. These problems are non-trivial to solve in
cloud-based LLMs. So, deployment of the LLMs directly on mobile devices is a better option. Yet deploying
these “large” LLMs on resource-constrained mobile devices poses a challenge. Thus, innovative full-stack
solutions are necessary to efficiently serve LLMs on mobile devices.

• Defending against security exploits targeting on-device LLMs. Because of concerns such as internet
connection, privacy, and data transmission, in certain circumstances, LLMs need to be deployed directly

1https://www.oppo.com/en/newsroom/press/oppo-make-ai-phones-accessible/
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on devices. In such a situation, it increases the attacking surface by opening new security problems to
end users. Indeed, the attack surface of LLMs deployed on devices is much larger than those deployed
over the cloud, as the physical on-device LLMs are stored in mobile devices that are easily accessible to
attackers. Unlike the privacy leakage and internet connectivity issues of deploying LLMs on cloud servers,
on-device deployment poses new challenges that require dedicated approaches to tackling. Our fellow
researchers have taken the initiative to achieve this objective. Representative works include the integration
of trustworthy execution environment (TEE) [153, 180], obfuscation [230], and customization [229] to
reduce the attacking surface. Therefore, better-defending approaches will be very important in LLM
deployment.

• Providing LLM-powered framework APIs. Expectedly, mobile apps are interested in accessing LLMs
to enable intelligent features. However, it would be challenging for app developers to directly interact
with LLMs, especially if they lack the necessary AI knowledge. We therefore argue that there is a need to
provide well-designed framework APIs to facilitate intelligent app development.

• Providing LLM-powered runtime app monitoring. Recent studies have presented various runtime
monitoring techniques for mobile apps where provenances are collected and analyzed by remote app
vendors to facilitate runtime profiling, performance optimization, and even mitigating security exploita-
tions. We anticipate LLMs can offer highly intelligent runtime monitoring techniques to reason about
the provenances and provide insights into the runtime behavior of mobile apps. Moreover, while recent
studies have shown the potential privacy risks when uploading app logs to remote servers, we note that
LLMs on mobile can be used to analyze these sensitive logs locally without leaking sensitive information
to remote servers.

We elaborate on these directions in the following sections.
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Fig. 1. Roadmap in Applying LLMs for Mobile.

2 PREPARING DATASET FOR FINE-TUNING LLMS
In the domain of software engineering (SE), the preparation of datasets is crucial for the effective training and fine-
tuning of LLMs [168]. Accurate, high-quality, and diverse datasets not only enhance the model’s generalization
capabilities but also optimize its performance, ensuring reliability in validation and testing. When preparing
datasets for fine-tuning LLMs, especially within SE, User Experience (UX), and other multi-modal data processing
scenarios, researchers must focus on the collection, classification, preprocessing, and representation of data to
ensure its richness and diversity.
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2.1 Application Scenarios
SE Datasets. The primary application domain would be SE scenarios, for which dataset preparation needs to
center around specific SE tasks such as code comprehension, bug fixing, code generation, and more. Data sources
can be divided into four main categories [64]: open-source datasets, collected datasets, constructed datasets,
and industrial datasets. Open-source Datasets [16, 83, 186, 213]: Publicly accessible datasets distributed via open-
source platforms or repositories. For example, the HumanEval dataset [17] contains 164 manually created Python
problems with their unit tests. Collected Datasets [67, 128, 157, 174]: Datasets compiled by researchers from various
sources such as websites, forums, blogs, and social media. Data is often extracted from Stack Overflow threads
or GitHub issue comments to tailor datasets for specific research queries. Constructed Datasets [32, 80, 86, 219]:
Datasets specifically designed by researchers by altering or enriching collected data to closely match particular
research goals. This includes manually annotating code snippet datasets to study automated program repair
technologies, among others. Industrial Datasets [4, 134, 189]: Comprise proprietary business information, user
behavior logs, and other sensitive data from commercial or industrial firms. These datasets are crucial for research
targeting real-world business situations but usually require navigating legal barriers to protect commercial
interests.

The current research landscape reveals a significant reliance on open-source and collected datasets due to their
accessibility and reliability. However, there’s a notable gap in the use of constructed datasets (mainly on how are
the dataset pre-processed for LLMs) and industrial datasets, indicating a potential disconnect between academic
research datasets and those encountered in real-world industrial contexts. Future research directions should aim
to bridge this gap by exploring the use of industrial datasets, ensuring that LLMs are applicable and robust across
both academic and industrial scenarios.
UX Datasets. In the mobile domain, UX scenarios are also important. Towards improving the user experience of
using mobile devices, one imperative task is to identify the list of scenarios that can be powered by LLMs. To
achieve this, it requires to prepare suitable datasets (e.g., diverse user-system interaction data) to train and fine-
tune LLMs. Key data sources include the following. User Interaction Logs: Records of user actions within software,
websites, or apps, which provide insights into behavior patterns, task workflows, and interface pain points. For
example, the new user-apps interactions dataset for behavioral profiling using smartphones [6] presents over
3 million actions derived from user interactions, offering valuable data to improve smartphone security. User
Feedback and Reviews: Comments from app stores, social media, forums, and review systems, providing insights
into user satisfaction and expectations. For example, the Google Play Store Reviews dataset [152] includes over
12,000 reviews, allowing classification into positive or negative sentiments based on ratings. Similarly, app_reviews
dataset [48] contains approximately 280,000 user reviews from 395 different open-source Android applications. It
offers comprehensive feedback on software maintenance and evolution, helping to understand user preferences
and app effectiveness. User Surveys and Interviews: These direct sources reveal user needs and preferences. The
challenge lies in converting responses into a structured format for LLM learning, necessitating careful coding
and categorization. For example, the Worldwide Mobile App User Behavior Dataset [112] provides extensive
insights into global mobile app usage behaviors and demographics, which can be instrumental in understanding
diverse user outlooks across different regions. User Testing and Experiments: Conducted in controlled settings,
this data shows how design choices affect user behavior and satisfaction. It’s crucial to understand the impact of
different interface designs and functionalities.

In streamlining the discussion on personalization and adaptation in UX scenarios for LLMs, we focus on
the essence of crafting user-centric software solutions. The process hinges on analyzing User Interaction Logs,
Feedback and Reviews, and insights from Surveys and Interviews to tailor experiences that resonate with
individual preferences. By dynamically adjusting content and interactions based on a deep understanding of user
behaviors and patterns, the software can offer a more personalized journey, enhancing user engagement and
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satisfaction. The challenge lies in balancing personalized experiences with privacy and security, ensuring data is
handled with care. Moreover, adaptation goes beyond customization to evolve with user feedback and subtle cues,
like device type or location, to anticipate and meet unexpressed needs, thereby fostering a deeper connection
with the user. Despite the hurdles of privacy concerns, bias mitigation, and technological limitations, the goal is
to develop LLM-powered applications that are not just functional but intuitive and engaging. This condensed
narrative underscores the importance of personalization and adaptation in moving towards more human-centric,
responsive, and ultimately more effective software solutions.
Multi-modal Datasets. Further to the above directions, it is also essential to consider handling multi-modal
data available on mobile devices. To date, large models have demonstrated emerging capabilities in handling
tasks over multi-modal data, such as text, image, audio, etc. Importantly, deploying LLMs in mobile devices offers
multi-modal data exposures, as modern mobile platforms can face various types of domain-specific data from
users (e.g., text, photos, audio), sensors (e.g. accelerometer, gyroscope, GPS), wearable devices (e.g., heart rate,
sleep quality), and network. Recent studies have shown that LLMs can be fine-tuned to comprehend textualized
signal collected from sensors [202]. Nevertheless, the integration of LLMs with multi-modal data processing in
mobile devices remains largely unexplored. We envision key challenges coming from numerous data sources,
data formats, and data types, which require innovative approaches to process and analyze.

More importantly, we envision the possibility of instructing LLMs to process various logs and traces generated
by mobile apps and even the mobile operating system (OS) itself. We aim to leverage LLMs to analyze those
logs and traces to facilitate runtime profiling, debugging, and performance optimization (see further technical
details and discussions in Sec. 7). Moreover, we anticipate the technical solutions for runtime detection of security
exploitations, penetrations, and other anomalies of apps and OS using LLMs. Supporting this vision, we advocate
for the community to provide datasets that include logs, traces, and other dimensions of provenances to enable
proper fine-tuning and calibration of LLMs.

2.2 Fine-tuning Techniques
This technique involves updating all or most of the model’s parameters during the fine-tuning process [126]. In
mobile development, this could be used when adapting a general-purpose LLM to become a specialized mobile
development assistant. For example, fine-tuning the entire model on a large corpus of Swift and iOS development
documentation and code examples to create an iOS-specific coding assistant.
Parameter-Efficient Fine-tuning (PEFT). PEFT techniques [29, 59, 116] aim to adapt models with high
performance while updating only a small subset of parameters, which is particularly useful when computational
resources are limited.
LoRA (Low-Rank Adaptation). LoRA [65] adds trainable rank decomposition matrices to each layer of the
model. In mobile development, this could be used to efficiently adapt a model to a specific framework like React
Native, adjusting its understanding of JavaScript and React paradigms in the mobile context without needing to
retrain the entire model.
Prefix Tuning. This method prepends trainable prefixes to the input of each transformer layer [109]. For mobile
development, this could be used to adapt a model to understand company-specific coding practices or internal
libraries, by adding context about the company’s development style at each layer of the model.
Prompt Tuning. Similar to prefix tuning, but only prepends trainable vectors to the input layer [96]. This could
be useful for task-specific tuning in mobile development, such as optimizing the model for generating UI layout
code or handling platform-specific APIs.
Instruction Fine-tuning. This technique involves fine-tuning the model on a dataset of instruction-output
pairs [221]. In mobile development, this could be particularly useful for enhancing the model’s ability to follow
specific development instructions or coding standards. For example, fine-tuning the model to understand and
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generate code based on platform-specific design guidelines like Material Design for Android or Human Interface
Guidelines for iOS.
Multi-task Fine-tuning. This approach involves fine-tuning the model on multiple related tasks simultane-
ously [127]. In mobile development, this could be used to create a versatile assistant capable of handling various
aspects of app development, such as simultaneously training on code generation, debugging, and performance
optimization tasks.
Continual Learning. This technique allows the model to learn new information over time without forgetting
previously learned knowledge [187]. In the rapidly evolving field of mobile development, this could be used to
keep the model updated with the latest SDK changes, new programming paradigms, or emerging best practices
without losing its understanding of fundamental concepts.
Few-shot Fine-tuning.This method fine-tunes the model using only a small number of examples [116]. In mobile
development, this could be particularly useful for quickly adapting a model to a new framework or language
feature without requiring a large dataset. For instance, updating a model’s understanding of new SwiftUI features
with just a handful of code examples.
Domain-Adaptive Pretraining. This two-stage approach first pre-trains the model on domain-specific data
before fine-tuning it on the target task [54]. For mobile development, this could involve pre-training on a large
corpus of mobile development documentation and open-source code across multiple platforms, followed by
fine-tuning for specific tasks or company needs.

3 APPLYING LLMS FOR MOBILE APP DEVELOPMENT AND ANALYSIS
This section proposes a holistic framework that utilizes the advanced capabilities of LLMs to address critical
aspects of mobile app development and analysis. By seamlessly integrating LLMs into processes such as app
development, code analysis, app testing, privacy evaluations, and app market analysis, we aim to ensure a secure,
user-centric, and optimized digital ecosystem. We now detail a vision where LLMs empower stakeholders across
the mobile app landscape, enhancing every facet from code integrity to market dynamics.

3.1 Objectives
Requirements Engineering forMobile Apps. In the specific context of mobile app development, LLMs have the
potential to significantly enhance requirements engineering by assisting in the translation of user needs into clear,
actionable requirements tailored for mobile platforms. They can enhance communication among stakeholders,
which is crucial for capturing the unique demands of mobile users. LLMs can be instrumental in crafting precise
documentation and use cases that reflect the mobile user experience, taking into account the constraints and
capabilities of mobile devices. However, it’s crucial to acknowledge the challenges associated with LLM use in
this critical phase, particularly the risk of hallucinations that could lead to incorrect or misleading requirements.
To mitigate risks, a hybrid approach combining LLM assistance with human expertise and validation is essential.
While LLMs can facilitate the validation process by checking for completeness and consistency, human oversight
remains crucial to ensure the accuracy and relevance of requirements. This approach aims to minimize the risk
of expensive modifications during the critical stages of mobile app development and align the project closely
with mobile user expectations and project objectives. The decision to use LLMs in requirements engineering
for mobile apps should be made carefully, weighing the potential benefits of efficiency and comprehensiveness
against the risks of inaccuracies, and implementing robust validation processes to leverage LLM capabilities
while safeguarding against their limitations.
App Development. LLMs could revolutionize the way developers conceive, design, and implement mobile
apps. While LLMs are already being used for code development, their potential in mobile app development
extends beyond current applications. By providing real-time coding assistance, generating code snippets based
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on developer prompts, and offering optimization suggestions, LLMs can significantly reduce development time
and elevate code quality [10, 45, 74, 111, 117, 145]. Specifically for mobile apps, LLMs can address the unique
challenges posed by the dynamic nature of mobile devices and varying operating systems. In addition to high-level
assistance, LLMs can delve into the intricacies of algorithm optimization, suggesting efficient data structures and
algorithms tailored to the app’s specific needs and constraints. For example, a study by Feng Lin et al. introduces
LCG [113], a code generation framework inspired by software engineering practices. LCG leverages various
software process models such as LCGWaterfall, LCGTDD, and LCGScrum, with LLM agents assuming roles like
requirement engineer, architect, developer, tester, and Scrum master. These agents use chain-of-thought and
prompt composition techniques to continuously refine and enhance code quality. This is particularly crucial for
mobile apps where resource management and performance optimization are critical due to device limitations.

Moreover, through code interpretation, LLMs can elucidate complex code segments, offering clarifications
and detailed explanations that enhance developers’ understanding of their own and others’ code. This leads to
improved debugging and maintenance efficiency. For mobile apps, LLMs can be trained to understand platform-
specific APIs and frameworks, providing more targeted assistance. The integration of code refactoring capabilities
could allow LLMs to suggest structural improvements that increase the readability and performance of the
codebase, promoting best practices and design patterns. In the context of mobile apps, LLMs can be utilized for
dynamic code refactoring, adapting to changing device capabilities and user interactions in real time.
App Code Analysis. The core functionality of an app hinges on its complex code, requiring detailed analysis to
ensure performance and security. LLMs provide powerful, comprehensive analysis beyond traditional methods [52,
105, 120, 125, 157, 177, 220]. While there are many non-LLM-based static analysis tools available, such as pylint,
LLMs offer unique advantages in mobile app code analysis. For example, LLMs can improve static code analysis
to thoroughly inspect code without running it, identifying complexities, compliance with coding standards, and
risky API uses [60, 165]. Unlike traditional tools, LLMs can understand context and nuances in code, potentially
identifying subtle issues that rule-based systems might miss. They can also adapt to new coding patterns and
languages more easily, which is crucial in the rapidly evolving mobile app ecosystem. This proactive analysis is
pivotal in identifying security vulnerabilities, code smells, and performance bottlenecks, effectively preempting
issues before they escalate into more significant problems.

LLMs can also enhance code clone detection by analyzing code’s syntax and semantics to identify duplicates
across apps [23, 30, 73, 82]. This could help prevent app cloning, protect originality, and avoid licensing issues,
preserving the app ecosystem’s integrity. Furthermore, LLMs can be leveraged for dynamic code analysis in
mobile apps, understanding how code behaves during runtime across different devices and operating system
versions. This capability is particularly valuable for identifying issues that only manifest under specific runtime
conditions.
App Testing and Optimization. Achieving a seamless and faultless app experience necessitates a relentless
pursuit of perfection through rigorous testing and constant optimization. LLMs are revolutionizing this process by
automating various facets of testing and optimization [107, 108, 162, 185, 199, 206, 212]. In GUI testing [121, 209],
for instance, LLMs can automate the generation of test cases, predict potential user interactions, and validate
UI elements for accessibility and usability standards. For mobile apps specifically, LLMs can generate test
scenarios that account for various screen sizes, orientations, and input methods unique to mobile devices. This
automation extends to bug replay and fixing [69, 78, 79], where LLMs can intelligently suggest corrections and
optimizations for identified issues, reducing the manual effort required from developers. In the mobile context,
LLMs can be trained to understand and replicate device-specific bugs, such as those related to battery usage or
sensor interactions. Moreover, LLMs can optimize app performance by analyzing usage patterns and resource
consumption, suggesting efficient algorithms, and predicting user behavior to preload resources or functionalities.
This is particularly crucial for mobile apps where performance directly impacts user experience and battery life.
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This level of automation and insight not only accelerates the development cycle but also ensures that the final
product stands up to the highest standards of quality, performance, and user satisfaction.
Privacy-related Analysis. As digital privacy [56, 71, 141, 170] becomes increasingly paramount, LLMs offer
a novel approach to navigating the complexities of privacy policies and compliance. By demystifying privacy
policies through data mining and ensuring that apps adhere to regulatory standards, LLMs could play a crucial
role in fostering a transparent and trust-based relationship between apps and their users.
App Market Ecosystem Analysis. In the ever-changing landscape of the app market [234], staying abreast of
trends and competitive dynamics is key to success. LLMs can offer unparalleled insights into market movements,
user preferences, and competitive strategies, empowering developers and marketers to make informed decisions
that drive growth and innovation. For example, the voice of the user, encapsulated in reviews, holds invaluable
insights into the app experience. Harnessing LLMs to mine this data, developers, and researchers can extract
pivotal information, classify sentiments, and detect spamwith higher accuracy [43, 89, 207].This not only amplifies
the value derived from user feedback but also equips developers with the tools to prioritize enhancements and
foster an engaging user experience.

3.2 Prompt Enhancement
To achieve the aforementioned objectives, there are various challenges need to be addressed. Representative
ones include the infamous hallucination problem (we briefly introduce it in the next subsection) that cannot be
avoided by LLMs alone. Therefore, researchers have explored various approaches to mitigate this problem (so as
to improve the inference results) by enhancing the prompts. We now present some of the key techniques that
have been adopted by our fellow researchers.

3.2.1 Prompting techniques. It has been demonstrated that the results of LLMs can be improved by directly
updating the prompts. Some of the representative updating methods are summarized below.
Task-specific prompts. Task-specific prompts [188] are tailored instructions designed to guide LLMs in

performing specialized mobile development tasks. For instance, when generating code for a mobile app’s user
interface, a prompt might include specific details about the desired layout, widget types, and platform-specific
guidelines (e.g., Material Design for Android or Human Interface Guidelines for iOS).

Few-shot learning. Few-shot learning [190] in the context of mobile software engineering involves providing
the LLM with a small number of examples to guide its output. This technique is particularly useful for maintaining
consistency in coding style or implementing platform-specific patterns.

Chain-of-thought reasoning. Chain-of-thought reasoning [193] prompts guide LLMs through a step-by-step
problem-solving process, which is crucial for complex mobile development tasks. This technique is particularly
valuable for performing complex reasoning such as improving apps’ performance.

Role-playing prompts. Role-playing prompts instruct the LLM to assume a specific role within the mo-
bile development process [87, 192]. This technique can be particularly effective for code reviews, architecture
discussions, or debugging sessions.

Template-based prompts. Template-based prompts use predefined structures to ensure consistent output in
mobile app development tasks [118]. This is particularly useful for generating boilerplate code or implementing
standard mobile app components.
Context-enhanced prompts. Context-enhanced prompts incorporate project-specific information, coding

standards, or platform-specific details to generate more relevant and tailored code [7]. For mobile development,
this might include details about the app’s architecture, target platforms, or specific libraries in use.
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3.2.2 RAG techniques. Except for directly updating the prompts, providing additional information (that could be
retrieved from a database) could further improve LLM’s results. Our fellow researchers have already explored
various ways to leverage RAG. Some of the representative RAG-based methods are summarized below.

Standard RAG.This is the basic form of RAG where relevant documents are retrieved based on the input query
and then used to augment the context for the language model [42]. In mobile development, this could involve
retrieving relevant API documentation or code snippets based on the developer’s query. For example, when a
developer asks about implementing push notifications in iOS, the system retrieves relevant documentation from
Apple’s developer resources before generating a response.

GraphRAG. GraphRAG enhances the standard RAG approach by representing knowledge in a graph structure,
allowing for more nuanced and interconnected information retrieval [31]. In mobile development, this can be
particularly useful for understanding complex relationships between different components of an app or SDK. For
instance, when dealing with Android’s activity lifecycle, GraphRAG can help retrieve not just individual method
descriptions, but also how these methods interact and influence each other, providing a more comprehensive
understanding.

AdaptiveRAG.This technique dynamically adjusts the retrieval process based on the complexity and specificity
of the query [72]. In mobile development, this could mean retrieving more detailed technical documentation for
advanced queries and simpler, high-level explanations for beginner questions. For example, a query about basic
UIKit elements might trigger retrieval of introductory documentation, while a question about advanced Core
Animation techniques would lead to more in-depth technical papers.

Multi-Vector RAG. Multi-Vector RAG uses multiple embedding vectors for each document, capturing dif-
ferent aspects or levels of information. This is particularly useful in mobile development where a single piece
of documentation might contain information relevant to different levels of expertise or different aspects of
development (e.g., UI, performance, security). For instance, when retrieving information about RecyclerView in
Android, it could simultaneously capture beginner-level usage, performance optimization tips, and accessibility
considerations.

Hybrid RAG. This approach combines retrieval-based methods with other techniques like few-shot learning
or fine-tuning [211]. In mobile development, this could involve retrieving relevant documentation and then
using few-shot examples to generate more context-appropriate code. For example, when assisting with SwiftUI
development, the system might first retrieve relevant view modifiers documentation and then use few-shot
examples to demonstrate how to combine these modifiers effectively.

Iterative RAG. Iterative RAG [208] involves multiple rounds of retrieval and generation, refining the results
with each iteration. This can be particularly useful for complex mobile development tasks that require breaking
down problems into smaller steps. For instance, when helping to architect a large-scale mobile application, the
system might first retrieve high-level architectural patterns, then iteratively retrieve more specific information
about implementing each component.

Conversational RAG. This technique is designed to maintain context over a longer conversation, retrieving
relevant information based on the entire conversation history. In mobile development, this is useful for prolonged
debugging sessions or when walking through the process of building a feature. For example, during a conversation
about implementing authentication in a React Native app, the system would keep track of previously discussed
topics (like setting up the development environment) to provide more contextually relevant information in
subsequent retrievals.

4 SERVING LLM ON MOBILE
LLMs have revolutionized NLP tasks with remarkable success on general tasks. With growing concerns over data
privacy and the stringent response latency requirement, running the LLM on mobile devices locally has attracted
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attention from both academia and industry. However, their formidable size and computational demands present
significant challenges for practical deployment on resource-constrained mobile devices. This section exclusively
focuses on techniques that can be applied to pre-existing LLMs with minimal training efforts, up to the level of
fine-tuning, rather than delving into the complexities of designing hardware and models specifically tailored
for mobile devices. Accomplishing full-stack on-device inference optimization necessitates a comprehensive
approach that takes into account various aspects of the model, hardware, software, and deployment stack. Among
these optimizations, model-level optimization (model compression) is often considered the most crucial for
deploying LLMs on mobile devices.

Model Compression techniques have been intensively investigated to reduce the LLM size and computational
complexity without significantly impacting its performance. We categorized 4 model compression techniques as
detailed in the following, including Pruning, Knowledge Distillation, Quantization, and Low-rank Factorization.
Pruning is one extensively studied technique [58, 93, 97] for removing non-essential components in the model.
Based on removing entire structural units or individual weights, Pruning can be divided into Structured Pruning [8,
35] or Unstructured Pruning [46, 222], respectively, both of which target weight reduction without modifying
sparsity during inference. Contextual pruning [122, 179] differs from the above by its dynamic nature, adjusting
the model in real-time based on the context of each inference task. Knowledge Distillation (KD) [62, 85, 178]
enables the transferring of knowledge from a complex model (LLMs), referred to as the teacher model, to a simpler
counterpart known as the student model for deployment. Most previous approaches were adopting white-box
distillation [77, 155, 164], which requires accessing the entire parameters of the LLM. Due to the arising of
API-based LLM services (e.g., ChatGPT), black-box distilled models attract lots of attention, such as Alpaca [171],
Vicuna [22], WizardLM [201], and so on [142, 233]. Quantization has emerged as a widely embraced technique
to enable efficient representation of model weights and activations [44, 53, 123] by transforming traditional
representation (floating-point numbers) to integers or other discrete forms. According to the timing of the
quantization process, it can be categorized into post-training quantization (PTQ) [36, 123, 136] and quantization-
aware training (QAT) [29, 84, 169]. LowRank Factorization [21, 70, 144] is a model compression technique that
aims to approximate a given weight matrix by decomposing it into two or more smaller matrices with significantly
lower dimensions. This method factorizes a weight matrix,, , into two matrices * and + , where, ≈ *+ , with
* being< × : and + being : × =, and : much smaller than< and =. This approximation significantly reduces
parameters and computational overhead. In LLM research, lowrank factorization has been widely used for efficient
finetuning, as seen in LORA [65] and its variants. TensorGPT [203], however, applies this concept differently
by compressing LLMs for edge devices. It uses TensorTrain Decomposition (TTD) to store large embeddings in
a lowrank tensor format, achieving up to 384̇0 times compression of the embedding layer while maintaining
or improving model performance. For optimal LLM deployment on mobile devices, consider a multi-pronged
approach combining pruning, knowledge distillation, quantization, and low-rank factorization techniques to
significantly reduce model size and computational complexity while preserving performance.

Beyond model compression, the use of the LLM on mobile devices can be further improved through other
inference optimizations, which involve Parallel Computation, Memory Management, Request Scheduling, Kernel
Optimization, and Software Frameworks. Parallel Computation [12, 143, 160] leverages modern hardware’s
parallel processing capabilities to distribute computation across multiple cores or devices, substantially speeding
up inference. It can be categorized into model parallelism [137, 143, 160] and decentralized inference [12, 13, 75],
depending on the target object being distributed. Memory Management [90, 130, 163] refers to allocating,
organizing, and efficiently utilizing the available memory resources on a mobile device. The Key-Value (KV) cache
is a prime optimization target for autoregressive decoder-based models due to the memory-intensive nature of
transformer architectures and the need for long-sequence inference [90, 158, 227]. Request Scheduling [5, 57,
139], similar to general ML serving techniques, aims to schedule incoming inference requests, optimize resource
utilization, guarantee response time within latency service level objective (SLO), and effectively handle varying

ACM Trans. Softw. Eng. Methodol.

 



LLM for Mobile: An Initial Roadmap • 11

request loads. Common aspects involve dynamic batching[5], preemption[57], priority [139], swapping [9], model
selection [50], cost efficiency [217], load balancing and resource allocation [196]. Kernel Optimization [1, 159,
214] focuses on optimizing the individual operations or layers within the model by leveraging hardware-specific
features and software techniques to accelerate critical computation kernels. Common aspects involve kernel
fusion [198], tailored attention [95], sampling optimization [34], variable sequence length [214], and automatic
compilation [81].
Software Frameworks [1, 2, 172] play a crucial role in inference optimization by encapsulating complex

patterns, practices, and functionalities into reusable high-level APIs or automatic processes, providing abstractions
to leverage various techniques for enhanced performance, scalability, and resource utilization. Integrating a
Deep Learning (DL) Compiler into the framework further streamlines the optimization process with a unified
environment for development, optimization, and deployment [106]. The DL compiler takes trained models as
input and translates them into optimized code or instructions, often represented as multi-level intermediate
representations (IRs), specifically tailored for target hardware platforms, such as CPUs, GPUs, TPUs, or other
accelerators. It further applies various analyses and optimization techniques to achieve frontend and backend
optimization, resulting in improved performance and efficiency during inference [18, 27, 92]. Recent research also
offers emerging compiler-aided security hardening techniques to protect the compiledmodel code [20]. Overall, the
synergy between software frameworks and DL compilers simplifies the development process, enabling automatic
optimization, hardware adaptation, portability, interoperability, and enhanced performance. By incorporating
various advanced techniques, software frameworks offer a pragmatic strategy for boosting inference performance,
scalability, and resource utilization, facilitating the development, optimization, and deployment of LLM serving
on mobile.

The optimization techniques described are not standalone solutions but are often used together to achieve the
best on-device inference performance. Additionally, refining LLM inference involves balancing model accuracy
with optimizing model size, computational demands, and overall performance, presenting a complex challenge
that requires careful consideration. Beyond striving for efficiency, ensuring the security and protection of the
model’s intellectual property (IP) adds another layer of intricacy to the optimization efforts. These aspects, along
with their implications for the optimization process, will be further discussed in the following on-device LLM
security and LLM-Powered frameworks sections.

5 ON-DEVICE LLM SECURITY
DL techniques such as LLM are deeply engaged in human life. We can use them to revise the article, provide
daily recommendations, write codes, and generate image or text content. The data collection required for cloud
LLM presents obvious privacy issues. Users’ personal, highly sensitive data have to be shared with computing
servers [161]. This may cause sensitive information leakage or violate data protection laws [230, 231]. Therefore,
deploying DL models directly on devices has gained popularity in recent years. However, recent studies show
that on-device DL deployment also has serious security issues, especially for LLM. As such DL models are directly
hosted on mobile systems, attackers can easily unpack the mobile Apps to obtain the deployed models [231].
Because the model weights are trained by a large amount of training data and have extremely high values [3, 39],
deploying LLM on devices is a high-risk decision for developers. In addition, the internal information of on-device
LLM can be considered a white box for attackers. Even if developers adopt some protections to resist parsing
the model information, attackers still can locate the model information and reverse engineer the model details,
i.e., weights and structure [231]. Moreover, recent side-channel attacks and hardware fault injection attacks (e.g.,
Rowhammer attacks [135]) can also be used to exploit deep learning models, even in the advanced transformer
architectures [150, 228]. For instance, it is shown that these system-level or hardware-level attacks can manipulate
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the model outputs [63] by performing Rowhammer attacks to flip certain critical bits in the model weights.
Moreover, with the help of queries to the model, attackers can also leak the model weights [149].

To protect the deployed DLmodels, especially for LLM, we now have two main methods to defend the on-device
models: Trusted Execution Environments (TEE) and program protection. For the Trusted Execution Environments
(TEE) [19, 94, 132, 133, 181, 235], it provides secured execution environment for on-device models. These methods
design customized software or hardware architecture for protect the ownership of the deployed model, disable
the access of unauthorized parties, and generate an encrypted model inference pipeline. These methods are
effective in protecting the deployed model. However, they are hard to apply to various mobile platforms such as
Android because they usually need specially designed software or hardware architectures. In addition, attackers
are capable of using side-channel attacks to infer the model architectures [11, 149, 194, 195, 200, 210, 224].

Android 
App

DL API 
Library

LLM Model 
Representation

Weights Neural 
model

LoadingDeployed 
ML Files

Model Representation

Parser Computing Code 
for Layers

DL Library

InputOutput

Fig. 2. The information leakage problem of on-device LLM on Android. The sensitive model representation is directly hosted
on mobile devices.

To protect the LLM on various mobile systems and devices, model protection can be considered a special
program protection problem. The general protection method for software such as obfuscation and optimization
can also be applied to LLM on mobile. As shown in Figure 2, the security issue of on-device LLM is mainly
caused by the exposure of the model representation (the red block of Figure 2). Attackers can reverse engineer
the model representation that is packed in the deployed AI programs, e.g., model files and API libraries, to steal
the intellectual property [204, 218] or generate effective white-box attacks [68, 138, 216, 231, 232]. Therefore,
minimizing the exposure of model representation can effectively protect the on-device LLM. To this end, Zhou et
al . [230] adopt the idea of code obfuscation [25, 26, 156, 182, 197], which is a well-developed approach for hiding
sensitive information in software, and propose to obfuscate the information of on-device ML models. Like the
obfuscated code, the obfuscated on-device model contains hard-to-read information but still can be correctly
run on mobile devices. It can significantly increase the difficulty of reverse engineering the deployed LLM. In
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addition, a program refactorization scheme has been proposed to hide the explicit model representation on
devices [229]. Unlike the other tools that only support limited number of model architectures and formats like
m2cgen2 and llama.cpp3, it automatically trace the function call of model inference, extract the related codes, and
refactor the code into an executable program. This scheme can applied to commonly used DL models such as
LLM. The generated program does not have explicit model representation, i.e., model weights and architecture.
Attackers need to use human efforts to understand the compiled binary file to reverse engineer the deployed
models. Accordingly, given the model becomes much obscure and hard to analyze, side channel attacks and
hardware fault injection attacks are also hard to apply to the protected models to achieve high attack accuracies
(e.g., the target critical model weights are hard to localize and manipulated) [151].

Overall, although defense strategies based on program protection can be applied to almost all mobile platforms,
it is worth noting that these strategies cannot disable the reverse engineering of on-device LLM. Their goal is to
significantly increase the cost of attackers, i.e., using lots of human efforts to understand the binary program.
The TEE-like defense methods are more suitable to be applied to high-value systems. In contrast, the program
defense strategy can be applied to various Apps on various mobile OS.

6 PROVIDING LLM-POWERED FRAMEWORK APIS
The exploration of LLM-powered framework APIs for mobile app development is a vibrant and expanding field,
focusing on streamlining the integration of advanced language models into mobile applications. This area of
research is dedicated to the development, optimization, and deployment of APIs that enable mobile apps to
leverage the capabilities of LLMs for a wide range of tasks, including natural language processing, conversational
interfaces, and content generation.

Recent advancements have concentrated on creating accessible, efficient, and scalable solutions [40, 47, 91].
Frameworks are being developed to simplify the integration of LLMs into various applications, offering APIs that
abstract away the complexities of direct interactions with LLMs. This makes it easier for developers to implement
advanced language capabilities in their applications. Additionally, these frameworks are evolving to support
more context-aware interactions, allowing LLMs to provide more relevant and personalized responses based on
the user’s context and previous interactions with the app [91].

Looking forward, the functionality and utility of LLM-powered framework APIs for mobile app development
could be significantly enhanced through focused research in several key areas. The development of standardized
API protocols promises to facilitate a more uniform development experience across different mobile operating
systems and device types. Standardizing APIs could ensure that LLM-powered features are consistently available
across the mobile ecosystem, catering to the diverse needs of developers and users alike.

Security is another critical area requiring attention. As the integration of LLMs into mobile apps increases,
addressing the security implications of these APIs becomes imperative. Future research will need to explore
ways to ensure secure data transmission between mobile devices and cloud servers, as well as secure on-device
processing to minimize data exposure. This will be crucial in maintaining user trust and protecting sensitive
information.

Energy efficiency is also a critical concern, given the limited battery life of mobile devices. Future directions
should include research into mechanisms for minimizing the energy consumption of LLM-powered APIs. This
could involve developing smarter caching strategies or optimizing the computational workload distribution
between the device and the cloud, ensuring that mobile applications can deliver advanced functionalities without
excessively draining battery life.

2https://github.com/BayesWitnesses/m2cgen
3https://github.com/ggerganov/llama.cpp
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Additionally, the potential for LLM-powered APIs to support more interactive and multimodal inputs, such
as combining text, voice, and visual inputs, opens up interesting new possibilities. This evolution could enable
more natural and engaging user interactions with mobile applications, creating new possibilities for app design
and functionality. Such advancements would not only enhance the user experience but also pave the way for
innovative applications that fully exploit the capabilities of LLMs.

7 PROVIDING LLM-POWERED RUNTIME MONITORING
Further to the above directions, LLMs can be deployed to monitor the runtime behavior of mobile apps for various
software engineering and security purposes. This is particularly important given the increasing complexity of
mobile apps and the potential security threats they face; for instance, mobile apps can be attacked to leak sensitive
user information, disrupt services, or even compromise the mobile device. Nevertheless, offline analysis and
testing of mobile apps’ behavior may be likely insufficient to detect and prevent all those runtime attacks. From
this perspective, we envision that LLMs can be deployed in mobile devices to monitor the runtime behavior
of mobile apps, the mobile frameworks, and even the mobile operating system (OS) itself for various software
engineering and security purposes.
Offering Intelligent Runtime Analysis. LLMs have demonstrated state-of-the-art performance in a wide
range of natural language and code processing tasks. In particular, it is shown that LLMs can reason real-world
software artifacts and other complex scenarios, given that they have been trained on large-scale corpora which
often subsume common sense knowledge and programming expertise. With the high reasoning capability, we
envision that LLMs can be deployed to monitor the runtime behavior of mobile apps to facilitate various software
engineering tasks, such as profiling, debugging, and performance optimization. Furthermore, given that possible
attacks can be launched against mobile apps and even mobile frameworks, we see that LLMs can be deployed to
monitor and reason the runtime behavior and recognize potential security threats. To enhance the intelligence of
LLMs in analyzing those collected information, we envision that LLMs can be fine-tuned with relevant trace
datasets to better reason the runtime behavior of mobile apps; we also expect LLMs to incorporate domain-
specific knowledge of common security threats encountered by mobile apps. Prompt engineering techniques
like chain-of-trust can also be adopted in this context. Overall, we see the high potential of LLMs to behave as a
“smart” runtime analysis system for mobile apps, which can provide insights into the runtime behavior of mobile
apps and the mobile system and outperforms traditional runtime analysis tools.
Offering Privacy-Preserving RuntimeAnalysis. To facilitate app vendors to continuously analyze the released
mobile apps, the common practice is that mobile apps generate runtime logs (e.g., crash reports and traces) and
upload them to remote servers for further analysis. This practice is widely used in real-world scenarios, yet it
raises privacy concerns as the logs may contain sensitive user information. In fact, recent studies have shown the
potential privacy risks of logs and traces generated by mobile apps, which can leak sensitive user information like
doctor appointments [61]. While some privacy-preserving techniques have been proposed to sanitize logs and
traces before uploading them to remote servers [61, 191], they essentially undermine the utility of logs and traces
for further analysis. Moreover, the mainstream approaches rely on differential privacy techniques, which only
offer limited privacy guarantees and may not be sufficient to protect group users’ privacy and confidentiality.
While some advanced techniques like secure multi-party computation (MPC) and anonymized transmissions may
be used to enable remote vendor analysis without leaking sensitive information, they are often computationally
expensive and impose a high requirement on the computing resources on mobile devices. From this perspective,
we believe that with LLMs deployed in mobile, app logs can be analyzed for most cases without leaking sensitive
information to the remote vendor servers. This offers a principled way to protect user privacy; before releasing the
mobile app, the app vendor can configure the LLMs in the mobile such that the LLMs can better analyze the logs
locally to decide performance issues or security threats. LLMs can analyze the raw logs to decide performance
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issues or security threats and query the remote vendor servers only when necessary to obtain further insights.
This way, the sensitive information in the raw logs will not be leaked to the remote vendor servers, and the user
privacy will be protected.
Design Considerations. To facilitate such demanding runtime analysis, we expect to conduct the following
tasks. On one hand, this requires the mobile apps and mobile system components under protection to provide
proper logs and introspection interfaces. LLMs can hook the provided interfaces to capture the runtime behavior
of mobile apps, and even the mobile frameworks and the mobile OS. Interestingly, instead of forming a “passive”
runtime analysis system where LLMs wait for logs and traces to be generated, we envision that LLMs can be
trained to actively interact with mobile apps and the system software to perform investigation. For instance,
once the LLM detects a potential security threat, it can interact with the mobile app to further confirm the threat
and then decide to take corresponding actions like alerting the user or even terminating the app. This shall offer
a more proactive and efficient runtime analysis system for mobile apps. On the other hand, we anticipate the
demand of fine-tuning LLMs for such security tasks. Our tentative exploration shows that mainstream LLMs
available on the market are not sufficiently trained with software trace data, which is crucial for runtime analysis.
Therefore, we advocate the community to provide relevant datasets to support LLM fine-tuning and customization
for runtime monitoring and analysis tasks.

Recent research has illustrated the high feasibility of using LLMs in relevant fields [76, 110]; this indicates
the high potential of using LLMs for mobile runtime analysis for software engineering and security purposes.
However, there still exist several challenges to be addressed in the context of mobile. For instance, we see the
demand of augmenting the LLMs’ response time to avoid noticeable delays in mobile devices. More importantly,
we envision the need to ensure the LLMs’ robustness against even privileged adversaries with access to the device
or the LLM model itself. One may also need to consider the potential “memorization” issues of LLMs, which may
lead to cross-app privacy leakage when malicious apps are installed on the same device and exploit the LLMs’
memorization capabilities. We believe that addressing these challenges will pave the way for deploying LLMs in
mobile devices for runtime analysis tasks.

8 DISCUSSION
LLM has been demonstrated to be useful in many software engineering fields. In this work, we are specifically
interested in adopting LLMs in the mobile field, which not only inherits many of the benefits (and challenges) from
the general SE field but also brings new challenges (i.e., mobile-specific concerns) to the community. Indeed, LLMs
targeting the mobile field may need to be improved with dedicated MSE (Mobile Software Engineering) data. The
distinction between MSE data and SE (Software Engineering) data is primarily rooted in their application contexts
and processing requirements. SE data encompasses a broad spectrum of software development tasks across various
platforms, including codebases, bug reports, and version histories. It is typically collected from open-source
repositories and industrial environments, with pre-processing focused on enhancing generalizability for tasks
such as code comprehension and bug detection. In contrast, MSE data is meticulously curated to address the
specific constraints and requirements of mobile software engineering scenarios. Representative MSE data includes
apps’ GUI pages, UI transition graphs, energy consumption, runtime logs, usages of permissions or sensitive APIs,
reviews, etc. Integrating Retrieval-Augmented Generation (RAG) into the preparation of datasets offers a novel
way to enhance model performance and adaptability. RAG enables real-time access to and retrieval of relevant
data, improving the relevance and accuracy of generated outputs by leveraging the most contextually appropriate
information. Devices like mobile phones, tablets, and IoT devices generate diverse data—user interaction logs,
sensor data, application traces, and system logs—that can be crucial for LLMs. By using RAG, researchers and
developers can dynamically incorporate this device-specific data during the generation process without extensive
pre-processing of static datasets. For instance, in SE, logs and runtime traces can enhance the model’s ability to
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generate context-relevant code snippets or debug suggestions. In UX, real-time user data can drive personalized
recommendations or interface adjustments. Additionally, RAG facilitates the integration of various data types in
multi-modal processing, ensuring outputs remain accurate and contextually relevant. This approach bridges the
gap between static dataset preparation and the dynamic needs of modern applications, leading to more intelligent,
responsive, and context-aware solutions.

When we have the LLMs ready, there are still various mobile-specific challenges that need to be addressed. First,
it is extremely challenging to reduce their size to be suitable for on-device deployment without compromising
performance. Mobile devices only have limited computational resources compared with online servers. Normally
the powerful model compress technologies will highly impact the model performance. Second, when putting
LLM directly on mobile devices, even if the LLM runs very well, it may unavoidably impact the normal execution
of the system (or other mobile apps) because large resources such as memory are constantly occupied by the
LLM. Third, putting LLM on devices could also increase the attack surface. The most significant concern is how to
defend against reverse-engineering attacks. It is relatively easy for attackers to physically access mobile devices
and subsequently, attackers could extract and reverse-engineer the deployed LLMs to steal intellectual property
or produce effective white-box attacks. In contrast, attackers can only use black-box methods to attack the cloud
LLMs, which is far less efficient than the white-box attacks. Therefore, for on-device LLMs, we need to increase
the on-device model security to a similar level as the cloud models.

Except for themobile-specific concernsmentioned above, the LLMs applied in themobile field will unfortunately
also suffer from problems faced by normal LLMs. Indeed, taking hallucination as an example, it has been extensively
studied within the field of natural language processing (NLP) [223] that is hard to mitigate. Hallucination refers
to the phenomenon where the model generates information that is either factually incorrect, fabricated, or
misleading, and it also impacts the use of LLMs in mobile software engineering, especially for mobile app
development and testing [33]. In mobile software development, hallucinations can manifest when LLMs are
utilized to assist developers in generating code, documentation, or design patterns [115, 148]. For instance,
when an LLM generates incorrect code snippets or suggests inappropriate libraries or frameworks, it can lead
to the integration of faulty or suboptimal components into the mobile application. Such errors might not be
immediately apparent, particularly in the early stages of development, but they can result in significant technical
debt, decreased app performance, or security vulnerabilities that are difficult to trace and resolve later in the
development process. Moreover, LLMs are increasingly being used in the generation of automated test cases
and in the identification of potential bugs or security issues within mobile applications. Hallucinations in this
context can lead to the creation of test cases that are based on incorrect assumptions or that target non-existent
functionality [38, 49]. This can result in a false sense of security, where developers believe that certain aspects
of the application have been thoroughly tested when, in reality, critical issues remain undetected. Additionally,
misleading or fabricated bug reports generated by an LLM can divert resources away from addressing real issues,
thus compromising the overall quality and reliability of the mobile software.

9 RELATED WORK
The rapid advancement of Large Language Models (LLMs) has led to their widespread application across various
domains, from natural language processing to mobile and edge computing environments. Through a comprehen-
sive collection of surveys and literature reviews on LLMs, we first provide a concise overview of the evolution and
development of LLMs. Subsequently, we investigate the challenges and security issues associated with applying
LLMs to mobile devices, along with examining current examples of LLM deployments on mobile platforms.
Evolution and Development of Large Language Models. The evolution of Large Language Models (LLMs)
began with early statistical models like n-grams, which struggled with data sparsity [55]. Neural language models,
such as RNNs [114], introduced word embeddings to improve sequence prediction [225]. Pre-trained models like
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BERT [28] marked a shift, enabling training on large datasets followed by task-specific fine-tuning [131]. The
introduction of transformers, particularly in GPT models [14, 146, 147], leveraged self-attention mechanisms,
significantly enhancing scalability and performance [131]. Modern LLMs, such as LLaMA [175, 176] and PaLM [24],
now contain billions of parameters, pushing the boundaries of language understanding across domains [64].
Much of the initial focus was on optimizing these models for high-performance computing platforms, with
more recent attention shifting to adapting LLMs for mobile devices, where computational resources are limited.
The development, capabilities, and adaptation of LLMs provide a foundation for their integration into mobile
platforms.
Challenges in Adapting LLMs for Mobile Devices. One of the key challenges in deploying LLMs on mobile
devices is balancing model size, performance, and efficiency. LLMs are computationally intensive, often requiring
substantial hardware to process large-scale data in real time, making them difficult to implement directly on
resource-constrained mobile platforms. To address this, recent advancements in model compression techniques,
such as quantization, pruning [21], knowledge distillation [62], and low-rank adaptation (LoRA) [65], have enabled
a reduction in model size without sacrificing performance. Techniques such as Mixture of Experts (MoE) [37]
further improve efficiency by selectively activating parts of the model, reducing the computational load. These
innovations are crucial for making LLMs viable on mobile devices, where power consumption, latency, and
computation capacity are critical concerns.
LLM Deployment and Security on Mobile Devices. Deploying LLMs on mobile devices also introduces
potential security risks, such as reverse engineering and data leakage. To mitigate these risks, the literature
suggests implementing techniques like Trusted Execution Environments (TEE) [153] and code obfuscation [25,
26, 156, 182, 197] to protect the integrity of the models. These approaches ensure that LLMs can be deployed
securely on mobile devices, particularly when dealing with sensitive user data. Future research should continue
to explore how to optimize LLM performance on mobile devices while maintaining data security and privacy.
Current Works on Deploying LLMs on Mobile Devices. Recent advancements in large language models
(LLMs) have led to significant progress in optimizing them for mobile platforms, overcoming challenges such as
computational constraints, inference speed, and privacy concerns. OpenELM[129], through its layer-wise scaling,
optimizes parameter allocation for mobile environments. Apple Foundation Models (AFM)[51] enhances inference
efficiency using grouped-query attention and quantization for privacy-centric applications. MobileLLM[124]
offers a “deep and thin” architecture suitable for hardware-constrained devices, excelling in tasks like zero-shot
reasoning. Qwen2.5[173, 205], trained on extensive datasets, provides domain-specific capabilities with models
ranging from 0.5B to 72B parameters, optimizing multilingual and long-text generation tasks, thus paving the
way for practical, efficient LLM deployment on mobile devices.

10 CONCLUSION
In this position paper, we have motivated the strong necessity to apply LLMs for the mobile ecosystem and
subsequently provided an initial roadmap for our fellow researchers to achieve that objective. In the roadmap, we
summarized six directions that we believe are urgently required to be researched, including (1) preparing more
datasets, (2) Addressing MSE tasks, (3) Serving LLM on mobile (4) Enhancing the security of on-device LLMs, (5)
facilitating intelligent app development through LLM-powered framework APIs, and (6) providing LLM-powered
runtime monitoring. We acknowledge to the community that, these six directions should not be considered as
representative to the whole space of applying LLMs for mobile. We would like to invite our fellow researchers to
help in identifying more research gaps that need to be filled in order to achieve intelligent user experiences.
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